基于深度学习的口罩污染目标检测算法介绍

简介: 近年来,随着人工智能的快速发展,基于深度学习的目标检测算法有着越来越广泛的应用,由于深度学习算法在真实环境中的鲁棒性远超过传统视觉算法,更适合应对现实环境中的各种复杂情况.

1.  两阶段以及但阶段目标检测算法


    时下流行的目标检测算法主要包含两阶段(Two-stage)算法和单阶段(One-stage)算法两类。其中,两阶段算法主要以RCNN系列为代表,此类算法需要先在区域提议(region proposal)阶段通过选择搜索算法对输入图像生成大量的候选区域,然后再使用 CNN 模型对生成的候选区域加以分类和回归;而单阶段算法主要以SSD算法和YOLO系列为代表,顾名思义,此类算法没有候选区域生成阶段,而是直接使用 CNN模型提取特征信息,从而进行检测目标的分类与定位。两阶段算法的区域提议阶段往往会生成大量的(可能超过 2000个)候选区域,这些候选区域为后续的CNN模型处理带来了极大的计算量,大幅降低了算法的检测速度。而相比于两阶段算法,单阶段算法的检测策略显然更为直接,CNN模型仅需要进行一次前向推理就能获得待检测目标的相关信息,这为单阶段算法带来了数十倍、甚至是上百倍于两阶段算法的检测速度,使其在视频目标检测等主流应用领域中可以达到更高的每秒传输帧率(Frames  Per Second,FPS),所以相比两阶段算法,单阶段算法的应用场景要广泛得多。当下最流行的通用目标检测算法毫无疑问是 YOLOv4,它在主流目标检测数据集COCO上面以65 FPS(测试于Tesla V100 GPU)的实时检测速度达到了65.7%的平均精度均值(mean Average Precision,m AP),相比于前作YOLOv3有着7.8%的大幅提升。


2.  目标检测算法实时性


    因为作为通用目标检测算法,YOLOv3、YOLOv4 需要在多类别(比如 COCO 数据集的80个类别)的目标检测任务中具备很强的泛化能力,所以它们的网络结构被设计得非常复杂,这在一方面提高了网络的训练难度,另一方面也为它们带来了并不理想的模型推理速度。例如,YOLOv4算法在 AMD  3600x  CPU上检测单张608 × 608尺寸的图片需要耗时 21 秒左右,而在 Ge Force GTX 1050Ti GPU(普通性能的 GPU)上的实时检测速度也仅有 13 FPS 左右。YOLOv4 算法虽然具备非常优秀的检测精度,但是复杂的网络结构需要大规模的网络参数量进行支撑,这导致了它的检测速度并不“实时”。口罩检测任务的应用场景非常普遍,多数场景是机场、车站等在全国范围内随处可见的公共交通场所,鉴于这类场所的分布普遍性,是不可能具备超高性能的计算机来部署YOLOv3、YOLOv4 这种非轻量级的目标检测算法的。Wang等人通过对YOLOv4算法的网络结构进行大幅的尺度缩放,并引入跨阶段局部网络(Cross Stage Partial Network,CSPNet)对骨干网络的构造进行改进,提出了YOLOv4-tiny算法。YOLOv4-tiny算法是一种典型的轻量级通用目标检测算法,它的网络参数量仅有YOLOv4算法的10%左右,检测速度则是 YOLOv4算法的6~8倍。相比于YOLOv4算法(具有三个尺度的预测特征层),YOLOv4-tiny算法在骨干网络和特征增强网络上都做了大量的简化,并且只有两个尺度的预测特征层。不过需要注意的是,YOLOv4-tiny网络结构的大幅简化随之而来的就是检测精度的牺牲,例如,它在COCO数据集上的 m AP 指标为42.0%,相比YOLOv4算法确实降低了不少。不过,相比COCO数据集的80个检测类别,现实应用中的大多数目标检测任务的类别数一般在 10 个以下,比如口罩检测任务就只有口罩目标和人脸目标 2个类别,对这类低类别数的检测任务来说,YOLOv4-tiny算法对目标的解析能力尚可,并且具备极为优秀的检测速度。

WE5(BU8~U@%{DQ(_Q}NZ2`Y.png

UJ_)3PV{5`2LE9S{{RFD[P3.png

BJ0P%(I3A3TPB2RY~EAG0@8.png

相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
29 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
6天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
22 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
6天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
26 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
22天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
66 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
22天前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
30 0
|
1月前
|
机器学习/深度学习 算法 安全
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)
27 0
|
1月前
|
机器学习/深度学习 传感器 编解码
深度学习之地球观测中的目标检测
基于深度学习的地球观测中的目标检测是将深度学习技术应用于遥感数据中以自动识别和定位目标物体的过程。这一技术迅速成为遥感领域的研究热点,主要原因在于地球观测(Earth Observation, EO)平台和遥感技术的进步带来了海量的高分辨率数据,而深度学习技术在目标检测、图像识别等任务上的显著成功为其提供了强有力的支持。
29 0
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。

热门文章

最新文章