本节书摘来自异步社区《Python Cookbook(第3版)中文版》一书中的第1章,第1.15节,作者[美]David Beazley , Brian K.Jones,陈舸 译,更多章节内容可以访问云栖社区“异步社区”公众号查看。
1.15 根据字段将记录分组
1.15.1 问题
有一系列的字典或对象实例,我们想根据某个特定的字段(比如说日期)来分组迭代数据。
1.15.2 解决方案
itertools.groupby()函数在对数据进行分组时特别有用。为了说明其用途,假设有如下的字典列表:
rows = [
{'address': '5412 N CLARK', 'date': '07/01/2012'},
{'address': '5148 N CLARK', 'date': '07/04/2012'},
{'address': '5800 E 58TH', 'date': '07/02/2012'},
{'address': '2122 N CLARK', 'date': '07/03/2012'},
{'address': '5645 N RAVENSWOOD', 'date': '07/02/2012'},
{'address': '1060 W ADDISON', 'date': '07/02/2012'},
{'address': '4801 N BROADWAY', 'date': '07/01/2012'},
{'address': '1039 W GRANVILLE', 'date': '07/04/2012'},
]
现在假设想根据日期以分组的方式迭代数据。要做到这些,首先以目标字段(在这个例子中是date)来对序列排序,然后再使用itertools.groupby()。
from operator import itemgetter
from itertools import groupby
# Sort by the desired field first
rows.sort(key=itemgetter('date'))
# Iterate in groups
for date, items in groupby(rows, key=itemgetter('date')):
print(date)
for i in items:
print(' ', i)
这会产生如下的输出:
07/01/2012
{'date': '07/01/2012', 'address': '5412 N CLARK'}
{'date': '07/01/2012', 'address': '4801 N BROADWAY'}
07/02/2012
{'date': '07/02/2012', 'address': '5800 E 58TH'}
{'date': '07/02/2012', 'address': '5645 N RAVENSWOOD'}
{'date': '07/02/2012', 'address': '1060 W ADDISON'}
07/03/2012
{'date': '07/03/2012', 'address': '2122 N CLARK'}
07/04/2012
{'date': '07/04/2012', 'address': '5148 N CLARK'}
{'date': '07/04/2012', 'address': '1039 W GRANVILLE'}
1.15.3 讨论
函数groupby()通过扫描序列找出拥有相同值(或是由参数key指定的函数所返回的值)的序列项,并将它们分组。groupby()创建了一个迭代器,而在每次迭代时都会返回一个值(value)和一个子迭代器(sub_iterator),这个子迭代器可以产生所有在该分组内具有该值的项。
在这里重要的是首先要根据感兴趣的字段对数据进行排序。因为groupby()只能检查连续的项,不首先排序的话,将无法按所想的方式来对记录分组。
如果只是简单地根据日期将数据分组到一起,放进一个大的数据结构中以允许进行随机访问,那么利用defaultdict()构建一个一键多值字典(multidict,见1.6节)可能会更好。例如:
from collections import defaultdict
rows_by_date = defaultdict(list)
for row in rows:
rows_by_date[row['date']].append(row)
这使得我们可以方便地访问每个日期的记录,如下所示:
>>> for r in rows_by_date['07/01/2012']:
... print(r)
...
{'date': '07/01/2012', 'address': '5412 N CLARK'}
{'date': '07/01/2012', 'address': '4801 N BROADWAY'}
>>>
对于后面这个例子,我们并不需要先对记录做排序。因此,如果不考虑内存方面的因素,这种方式会比先排序再用groupby()迭代要来的更快。