Python | Numpy:详解计算矩阵的均值和标准差

简介: 对于 CRITIC 权重法而言,在标准差一定时,指标间冲突性越小,权重也越小;冲突性越大,权重也越大;另外,当两个指标间的正相关程度越大时,(相关系数越接近1),冲突性越小,这表明这两个指标在评价方案的优劣上反映的信息有较大的相似性。

一、前言


CRITIC权重法是一种比熵权法和标准离差法更好的客观赋权法:


  • 它是基于评价指标的对比强度和指标之间的冲突性来综合衡量指标的客观权重。考虑指标变异性大小的同时兼顾指标之间的相关性,并非数字越大就说明越重要,完全利用数据自身的客观属性进行科学评价。


  • 对比强度是指同一个指标各个评价方案之间取值差距的大小,以标准差的形式来表现。标准差越大,说明波动越大,即各方案之间的取值差距越大,权重会越高;


指标之间的冲突性,用相关系数进行表示,若两个指标之间具有较强的正相关,说明其冲突性越小,权重会越低。


对于 CRITIC 权重法而言,在标准差一定时,指标间冲突性越小,权重也越小;冲突性越大,权重也越大;另外,当两个指标间的正相关程度越大时,(相关系数越接近1),冲突性越小,这表明这两个指标在评价方案的优劣上反映的信息有较大的相似性。


在用 Python 复现 CRITIC 权重法时,需要计算变异系数,以标准差的形式来表现,如下所示:



Sj表示第 j 个指标的标准差,在 CRITIC 权重法中使用标准差来表示各指标的内取值的差异波动情况,标准差越大表示该指标的数值差异越大,越能放映出更多的信息,该指标本身的评价强度也就越强,应该给该指标分配更多的权重。


研究收集到湖南省某医院 2011 年 5 个科室的数据,共有 6 个指标,当前希望通过已有数据分析各个指标的权重情况如何,便于医院对各个指标设立权重进行后续的综合评价,用于各个科室的综合比较等。数据如下:



二、详解计算均值和标准差


初始化一个简单的矩阵:


a=np.array([
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
    ])
a


分别计算整体的均值、每一列的均值和每一行的均值:


print("整体的均值:", np.mean(a))              # 整体的均值print("每一列的均值:", np.mean(a, axis=0))    # 每一列的均值print("每一行的均值:", np.mean(a, axis=1))    # 每一行的均值


分别计算整体的标准差、每一列的标准差和每一行的标准差:


print("整体的方差:", np.std(a))              # 整体的标准差print("每一列的方差:", np.std(a, axis=0))    # 每一列的标准差print("每一列的方差:", np.std(a, axis=1))    # 每一行的标准差


结果如下:



三、实践:CRITIC权重法计算变异系数


导入需要的依赖库:


importnumpyasnpimportpandasaspd


提取数据:


df=pd.read_excel("./datas/result03.xlsx")
dfdatas=df.iloc[:, 1:]
datas


如下所示:



数据正向和逆向化处理:


X=datas.valuesxmin=X.min(axis=0)
xmax=X.max(axis=0)
xmaxmin=xmax-xminn, m=X.shapeprint(m, n)
foriinrange(n):
forjinrange(m):
ifj==5:
X[i, j] = (xmax[j] -X[i, j]) /xmaxmin[j]   # 越小越好else:
X[i, j] = (X[i, j] -xmin[j]) /xmaxmin[j]   # 越大越好X=np.round(X, 5)
print(X)


如下所示:



按列计算每个指标数据的标准差:



发现结果与文档不一致:



原因:numpy默认是除以样本数,求的是母体标准差;而除以样本-1,得到的才是样本标准差,这时设置参数 ddof=1 即可!



如上图所示,这下与文档里的结果一致了!


推荐阅读:

CRITIC权重法

目录
相关文章
|
5天前
|
Python
Python中Cp、Cpk、Pp、Ppk的计算与应用
总的来说,Cp、Cpk、Pp、Ppk是衡量过程能力的重要工具,它们可以帮助我们了解和改进生产过程,提高产品质量。
37 13
|
8天前
|
存储 人工智能 算法
使用Python计算从位置x到y的最少步数
本文通过Python代码结合广度优先搜索(BFS)算法,解决从起点到终点的最少步数问题。以二维网格为例,机器人只能上下左右移动,目标是最短路径。BFS按层遍历,确保首次到达终点即为最短路径。文中提供完整Python实现,包括队列与访问标记数组的使用,并输出示例结果。此外,还探讨了双向BFS、Dijkstra及A*算法等优化方法,帮助读者深入理解最短路径问题及其高效解决方案。
36 0
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
131 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
4月前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
101 18
|
4月前
|
Python
使用Python计算字符串的SHA-256散列值
使用Python计算字符串的SHA-256散列值
120 7
|
5月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
160 3
|
5月前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
173 3
|
11月前
|
Python
python相关库的安装:pandas,numpy,matplotlib,statsmodels
python相关库的安装:pandas,numpy,matplotlib,statsmodels
568 0
|
Python Windows
python怎么安装第三方库,python国内镜像源,终于找到最全的安装教程啦;如Requests,Scrapy,NumPy,matplotlib,Pygame,Pyglet,Tkinter
python怎么安装第三方库,python国内镜像源,终于找到最全的安装教程啦;如Requests,Scrapy,NumPy,matplotlib,Pygame,Pyglet,Tkinter
2270 0
|
Python
python如何安装numpy模块?
python安装numpy模块 python numpy安装思路 第一次安装时的思路 第一次安装时遇到的坑 第二次安装的思路(快速安装避免踩坑)
639 0
python如何安装numpy模块?