python-随机森林后筛选最重要变量,模型准确率、随机森林混淆矩阵结果、基尼系数排序图

简介: python-随机森林后筛选最重要变量,模型准确率、随机森林混淆矩阵结果、基尼系数排序图

在测试集上进行预测

y_pred = rf.predict(X_test)

计算模型准确率

accuracy = accuracy_score(y_test, y_pred)
print(“模型准确率:”, accuracy)
#### 1.1、对应输出
![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/direct/5728875180a74d048403be4a5e83eb4d.png)
### 2.随机森林混淆矩阵结果

<------------------随机森林混淆矩阵结果----------------------->

读取数据

data = pd.read_csv(‘C:\Users\31425\Desktop\新建文件夹\序列\蒿属1.csv’)
labels = data[‘species’]
data = data.drop(‘species’, axis=1)

拆分数据集

train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2, random_state=42)

创建随机森林分类器

rfc = RandomForestClassifier(n_estimators=100, random_state=42)

训练模型

rfc.fit(train_data, train_labels)

进行预测

predictions = rfc.predict(test_data)

计算混淆矩阵

cm = confusion_matrix(test_labels, predictions)
print(cm)
#### 2.1矩阵结果在这里插入图片描述
### 3、随机森林对影响蒺藜科花粉判别的自变量重要性基尼系数排序图

《--------------随机森林对影响蒺藜科花粉判别的自变量重要性基尼系数排序图-------------------》

读取数据

data = pd.read_csv(‘C:\Users\31425\Desktop\新建文件夹\序列\蒿属1.csv’)

将数据集分为自变量和因变量

X = data.drop(‘species’, axis=1)
y = data[‘species’]

训练随机森林模型

model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X, y)

绘制特征重要性排序图

feature_importances = model.feature_importances_
feature_names = X.columns.values
indices = np.argsort(feature_importances)[::-1]
plt.bar(range(X.shape[1]), feature_importances[indices])

在每个柱子上添加文本标签

ontainer = plt.bar(range(X.shape[1]), feature_importances[indices])
padding = 0.01
for rect in plt.bar(range(X.shape[1]), feature_importances[indices]):
height = rect.get_height()
plt.text(rect.get_x() + rect.get_width() / 2, height + padding, f"{height:.3f}", ha=“center”, va=“bottom”)
plt.xticks(range(X.shape[1]), feature_names[indices], rotation=90)
plt.rcParams[‘font.family’] = ‘sans-serif’
plt.rcParams[‘font.sans-serif’] = [‘SimHei’] # 设置中文字体为黑体
plt.title(“随机森林对影响蒺藜科花粉判别的自变量重要性基尼系数排序图”)
plt.show()
#### 自变量重要性基尼系数排序图
### 最后
> **🍅 硬核资料**:关注即可领取PPT模板、简历模板、行业经典书籍PDF。  
> **🍅 技术互助**:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。  
> **🍅 面试题库**:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。  
> **🍅 知识体系**:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**


相关文章
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
64 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
28天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
251 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
8天前
|
存储 Python 容器
python之变量的使用
Python 中变量是对象的引用,赋值即为指向内存中对象。创建对象时,解释器分配内存,引用计数管理内存回收。Python 是动态类型语言,变量类型在运行时确定。对象分为可变与不可变,前者可修改内部状态,后者则不行。命名空间管理变量作用域,确保不同区域的变量独立。
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
195 73
|
26天前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
32 10
|
1月前
|
人工智能 Unix Java
[oeasy]python059变量命名有什么规则_惯用法_蛇形命名法_name_convention_snake
本文探讨了Python中变量命名的几种常见方式,包括汉语拼音变量名、蛇形命名法(snake_case)和驼峰命名法(CamelCase)。回顾上次内容,我们主要讨论了使用下划线替代空格以提高代码可读性。实际编程中,当变量名由多个单词组成时,合理的命名惯例变得尤为重要。
89 9
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
98 21
|
2月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
115 23
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
84 2

热门文章

最新文章

推荐镜像

更多