numpy中的converters和usecols用法

简介: 用Python打开Excel数据,读取时需要将”学号“和“ID"转换成字符,以便后续操作

用Python打开Excel数据,读取时需要将”学号“和“ID"转换成字符,以便后续操作

df = pd.read_excel(path, converters={'学号': str, 'ID': str})

58019788bdb446f29e8ffc24632f76e9.png

以下是我的经历来体会:

我在从Excel读入python的数据时,发现读出的是空值:

import pandas as pd 
df=pd.read_excel("D:/Python/05DataMineML/2022STU(1).xlsx")
df

35e7f04d38974493a4957b5d1bec8a2b.png


但是分明是有数据的,大概率出现的原因是sheetname(表的名称)出现了问题。

那就试试其他的方法:


下图是Excel的表头,共有115行数据。

82ef2d9b35e2477086dfddcb81fe0379.png


方法一:使用usecols

#获取字段的第一种写法
import pandas as pd
df=pd.read_excel('../05DataMineML/2022STU(1).xlsx',usecols=['学号','姓名','20220101','20220125','20220202','20220208','20220213','20220220','20220226','20220311','20220320','20220327','20220403','randscore'],index_col='姓名',sheet_name='2022STUMOOC')
df.info()

index_col:指定作为表格的索引值

usecols:pandas读取excel使用read_excel()中的usecols参数读取指定的列

sheet_name:表名

f852f40e7bd548619866ac182eb4bfef.png

重点:要使用usecols参数,sheet_name必须显式写出来。

83522a55ac02438f80a2c0755c427216.png

方法二:使用numpy

#获取字段的第二种写法:使用numpy
import pandas as pd
import numpy as np
df=pd.read_excel('../05DataMineML/2022STU(1).xlsx',converters={'学号':str},usecols=np.arange(3,16),index_col='姓名',sheet_name='2022STU')
df.head()

这里就涉及converters:

converters={'学号':str}:将学号转换为字符类型,以便后续操作。

3ae2d0de3f7e41c4ae71c4825110fb91.png

这里使用了usecols=np.arange(3,16)

67c20b035e5948e3aa2d59bd89703036.png

方法三:使用切片区间

#获取字段的第三种写法:切片区间
import pandas as pd
import numpy as np
df=pd.read_excel('../05DataMineML/2022STUMOOC (1).xlsx',converters={'学号':str},usecols=("D:P"),index_col='姓名',sheet_name='2022STUMOOC')
df

这里使用了usecols=("D:P"),也就是使用了如下图每列的序号值做切片

d97873a167714a6ebb034908c3da95ca.png54ae28f4aeb643c89123c12844080c11.png

总结:

  • converters用法:转换类型。比如将Excel数据一列从int变成str
  • usecols用法:
  1. usecols=[‘学号’,‘姓名’]
  2. usecols=np.arange(3,16)
  3. usecols=(“D:P”)


相关文章
|
6月前
|
存储 索引 Python
一文掌握python数组numpy的全部用法(零基础学python(二))
一文掌握python数组numpy的全部用法(零基础学python(二))
|
1月前
|
Python
Numpy学习笔记(一):array()、range()、arange()用法
这篇文章是关于NumPy库中array()、range()和arange()函数的用法和区别的介绍。
41 6
Numpy学习笔记(一):array()、range()、arange()用法
|
6月前
|
数据采集 数据挖掘 Python
numpy中的浅复制和深复制的详细用法(3)
numpy中的浅复制和深复制的详细用法(3)
numpy中的浅复制和深复制的详细用法(3)
|
6月前
|
vr&ar Python
轻松掌握Numpy日常用法,体验Numpy之快(二)
轻松掌握Numpy日常用法,体验Numpy之快(二)
|
6月前
|
存储 机器学习/深度学习 并行计算
轻松掌握Numpy日常用法,体验Numpy之快(一)
轻松掌握Numpy日常用法,体验Numpy之快(一)
|
6月前
|
Python
关于Python的Numpy库reshape()函数的用法
1.介绍 更改数组的形状,不改变原数组 2.语法 a = np.reshape(mat, newshape, order = ‘C’) a : newshape形状的新数组 mat : 原数组
159 0
|
Python
【Numpy】flatnonzero函数的用法
【Numpy】flatnonzero函数的用法
100 0
|
机器学习/深度学习 数据挖掘 索引
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(上)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(上)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(上)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(中)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(中)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(中)
|
Python
【numpy】random.RandomState()函数用法详解
【numpy】random.RandomState()函数用法详解
【numpy】random.RandomState()函数用法详解