轻松掌握Numpy日常用法,体验Numpy之快(一)

简介: 轻松掌握Numpy日常用法,体验Numpy之快(一)

Numpy----Python开源的科学计算工具包

高级的数值编程工具

Numpy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组。

Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用Numpy比直接使用Python要简洁的多。

Numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。

1、Numpy基础数据结构

NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:

① 对数组结构数据进行运算(不用遍历循环)

② 随机数、线性代数、博立叶变换等功能

许多高级工具的构建基础,比如Pandas

ndarray介绍:

NumPy provides an N-dimensional array type, the ndarray,

which describes a collection of “items” of the same type.

NumPy提供了一个N维数组类型ndarray,它描述了相同类型item的集合。

用ndarray进行存储:

import numpy as np

#创建ndarray

score = np.array(

[80, 89, 86, 67, 79],

[78, 97, 89, 67, 81],

[90, 94, 78, 67, 74],

[91, 91, 90, 67, 69],

[76, 87, 75, 67, 86],

[70, 79, 84, 67, 84],

[94, 92, 93, 67, 64],

[86, 85, 83, 67, 80]])

score

2、Ndarray的优势

2.1 内存块风格

ndarray到底跟原生python列表有什么不同呢,请看一张图:

从图中我们可以看出ndarray在存储数据的时候,数据与数据的地址都是连续的,这样就给使得批量操作数组元素时速度更快。

这是因为ndarray中的所有元素的类型都是相同的,而Python列表中的元素类型是任意的,所以ndarray在存储元素时内存可以连续,

而python原生list就只能通过寻址方式找到下一个元素,这虽然也导致了在通用性能方面Numpy的ndarray不及Python原生list,

但在科学计算中,Numpy的ndarray就可以省掉很多循环语句,代码使用方面比Python原生list简单的多。

2.2 ndarray支持并行化运算(向量化运算)

numpy内置了并行运算功能,当系统有多个核心时,做某种计算时,numpy会自动做并行计算

Numpy底层使用C语言编写,内部解除了GIL(全局解释器锁),其对数组的操作速度不受Python解释器的限制,所以,其效率远高于纯Python代码。

3、多维数组ndarray

先下载numpy:

pip install numpy

import numpy as np

ar = np.array([1,2,3,4,5,6,7])

print(ar) # 输出数组,注意数组的格式:中括号,元素之间没有逗号(和列表区分)

print(ar.ndim) # 输出数组维度的个数(轴数),或者说“秩”,维度的数量也称rank

新版本中,多维数组,里面的每个数组长度必须相同,否则报错

如果不想报错,加上dtype=object

三维数组

三维数组

print(ar.shape) # 数组的维度,对于n行m列的数组,shape为(n,m)

2行5列

print(ar.size) # 数组的元素总数,对于n行m列的数组,元素总数为n*m

print(ar.dtype) # 数组中元素的类型,类似type()(注意了,type()是函数,.dtype是方法)

print(ar.itemsize) # 数组中每个元素的字节大小,int32l类型字节为4,float64的字节为8

print(ar.data) # 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

查看下ar数组

ar # 交互方式下输出,会有array(数组)

#数组的基本属性

#① 数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推

#② 在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量:

#比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组

#所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。

#而轴的数量——秩,就是数组的维数。

1.创建数组:array()函数,括号内可以是列表、元祖、数组、生成器等

ar1 = np.array(range(10)) # 整型

ar2 = np.array([1,2,3.14,4,5]) # 浮点型

ar3 = np.array([[1,2,3],(‘a’,‘b’,‘c’)]) # 二维数组:嵌套序列(列表,元祖均可)

数据类型也会转换

ar4 = np.array([[1,2,3],(‘a’,‘b’,‘c’,‘d’)]) # 注意嵌套序列数量不一会怎么样

数量不一样,新版本直接报错

换成1.22.4版本,不报错,但是警告即将被废弃该用法

print(ar1,type(ar1),ar1.dtype)

print(ar2,type(ar2),ar2.dtype)

print(ar3,ar3.shape,ar3.ndim,ar3.size) # 二维数组,共6个元素

print(ar4,ar4.shape,ar4.ndim,ar4.size) # 一维数组,共2个元素

2.创建数组:arange(),类似range(),在给定间隔内返回均匀间隔的值。

print(np.arange(10)) # 返回0-9,整型

print(np.arange(10.0)) # 返回0.0-9.0,浮点型

print(np.arange(5,12)) # 返回5-11

print(np.arange(5.0,12,2)) # 返回5.0-12.0,步长为2

print(np.arange(10000)) # 如果数组太大而无法打印,NumPy会自动跳过数组的中心部分,并只打印边角:

3.创建数组:linspace():返回在间隔[开始,停止]上计算的num个均匀间隔的样本。前闭后闭

ar1 = np.linspace(2.0, 3.0, num=5)

创建5个间隔均匀的样本

ar2 = np.linspace(2.0, 3.0, num=5, endpoint=False) 不包含最后一个值,默认是true包含

如果为真,输出(结果,步长)

ar3 = np.linspace(2.0, 3.0, num=5, retstep=True)

得到的是元祖

print(ar1,type(ar1))
print(ar2)
print(ar3,type(ar3))
# numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)   默认值
# start:起始值,stop:结束值
# num:生成样本数,默认为50

#endpoint:如果为真,则停止是最后一个样本。否则,不包括在内。默认值为True。

#retstep:如果为真,返回(样本,步长),其中步长是样本之间的间距 → 输出为一个包含2个元素的元祖,第一个元素为array,第二个为步长实际值

4.创建数组:zeros()/zeros_like()/ones()/ones_like()

ar1 = np.zeros(5)

643105d423ff423f9ef6f754d334d5ff.png

ar2 = np.zeros((2,2), dtype = int)

print(ar1,ar1.dtype)

print(ar2,ar2.dtype)

print(‘------’)

numpy.zeros(shape, dtype=float, order=‘C’):返回给定形状和类型的新数组,用零填充。

shape:数组纬度,二维以上需要用(),且输入参数为整数

dtype:数据类型,默认numpy.float64

order:是否在存储器中以C或Fortran连续(按行或列方式)存储多维数据。

ar3 = np.array([list(range(5)),list(range(5,10))])

ar4 = np.zeros_like(ar3)

用0填充结构与谁类似

print(ar3)

print(ar4)

print(‘------’)

#返回具有与给定数组相同的形状和类型的零数组,这里ar4根据ar3的形状和dtype创建一个全0的数组


ar5 = np.ones(9)

ar6 = np.ones((2,3,4))

ar7 = np.ones_like(ar3)

print(ar5)

print(ar6)

print(ar7)

#ones()/ones_like()和zeros()/zeros_like()一样,只是填充为1

5.创建数组:eye()

print(np.eye(5))

创建一个正方的N*N的单位矩阵,对角线值为1,其余为0


轻松掌握Numpy日常用法,体验Numpy之快(二):https://developer.aliyun.com/article/1496336

相关文章
|
6月前
|
存储 索引 Python
一文掌握python数组numpy的全部用法(零基础学python(二))
一文掌握python数组numpy的全部用法(零基础学python(二))
|
20天前
|
Python
Numpy学习笔记(一):array()、range()、arange()用法
这篇文章是关于NumPy库中array()、range()和arange()函数的用法和区别的介绍。
39 6
Numpy学习笔记(一):array()、range()、arange()用法
|
6月前
|
数据采集 数据挖掘 Python
numpy中的浅复制和深复制的详细用法(3)
numpy中的浅复制和深复制的详细用法(3)
numpy中的浅复制和深复制的详细用法(3)
|
6月前
|
vr&ar Python
轻松掌握Numpy日常用法,体验Numpy之快(二)
轻松掌握Numpy日常用法,体验Numpy之快(二)
|
6月前
|
Python
关于Python的Numpy库reshape()函数的用法
1.介绍 更改数组的形状,不改变原数组 2.语法 a = np.reshape(mat, newshape, order = ‘C’) a : newshape形状的新数组 mat : 原数组
148 0
|
Python
【Numpy】flatnonzero函数的用法
【Numpy】flatnonzero函数的用法
98 0
|
机器学习/深度学习 数据挖掘 索引
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(上)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(上)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(上)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(中)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(中)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(中)
|
Python
【numpy】random.RandomState()函数用法详解
【numpy】random.RandomState()函数用法详解
【numpy】random.RandomState()函数用法详解
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(下)
Numpy用法详细总结:学习numpy如何使用,看这一篇文章就足够了(下)