关于Python的Numpy库reshape()函数的用法

简介: 1.介绍更改数组的形状,不改变原数组2.语法a = np.reshape(mat, newshape, order = ‘C’)a : newshape形状的新数组mat : 原数组

1.介绍

更改数组的形状,不改变原数组

2.语法

a = np.reshape(mat, newshape, order = ‘C’)

a : newshape形状的新数组

mat : 原数组

newshape:(1, 2)/ 1, 2 都可以改为1行2列的数组

order:读取原数组的规则,默认为C(C行优先,F按某种方式,但不是列优先!)

order暂时按这么理解。

3.使用

  1. b = np.reshape(a, newshape)
  2. b = a.reshape(newshape)

key:其中newshape中可以有参数-1,意义为模糊推测,如(-1, 2)我不管你有行,修改为2列的二维数组即可;如(3,-1)我不管你有几列,修改为3行的二维数组即可

3.1 order的引用示例

行优先:

import numpy as np
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 修改为1,行12列数组,顺序读取
b = a.reshape(1, 12, order='C')
print("修改后:")
print(b)


dbab2e18ff874bfda5fd2c54ddd511fb.png

F方式读取

import numpy as np
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 修改为1行12列,按列优先读取
b = a.reshape(1, 12, order='F')
print("修改后:")
print(b)


04eb4dcb33f64ab48254e184e15fba78.png

非列优先

3.2 实际用法(一般order为默认值)

给定形状

import numpy as np
# 3行4列的二维数组
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 此时中间只剩newshape,2行6列
b = a.reshape(2,6)
print("修改后:")
print(b)


d19b17dd2d9b409cbf026de718dcfd5e.png

模糊推测,推测列

import numpy as np
# 3行4列的二维数组
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 此时中间只剩newshape,修改为6行的数组就行,多少列我不知道
b = a.reshape(6, -1)
print("修改后:")
print(b)

模糊推测,推测行

import numpy as np
# 3行4列的二维数组
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 此时中间只剩newshape,修改为3列的数组就行,多少行我不知道
b = a.reshape(-1, 3)
print("修改后:")
print(b)


b47d038e241a4f95a1a85871e06ecdb3.png

模糊推测升维

import numpy as np
# 3行4列的二维数组
a = np.array([[1, 2, 3, 10], [4, 5, 6, 11], [7, 8, 9, 12]])
print("原数组:")
print(a)
# 此时中间只剩newshape,修改为3行2列的子数组,多少行我不知道
b = a.reshape((-1, 3, 2))
print("修改后:")
print(b)


8f3f6cab78024748864c98b78e47653c.png

key:在数组的一开始,数方括号,个数即为维数,原数组为二维数组,修改的数组为3维数组

以上就是reshape的用法,后续可能还会补充,欢迎在评论区讨论哦!

目录
相关文章
|
1天前
|
机器学习/深度学习 PyTorch 算法框架/工具
Python冷知识:如何找出新版本增加或删除了哪些标准库?
Python冷知识:如何找出新版本增加或删除了哪些标准库?
9 0
|
1天前
|
数据采集 Rust Java
Python 为什么没有 main 函数?为什么我不推荐写 main 函数?
Python 为什么没有 main 函数?为什么我不推荐写 main 函数?
5 0
|
1天前
|
缓存 中间件 数据安全/隐私保护
Python中的装饰器:优雅而强大的函数修饰工具
在Python编程中,装饰器是一种强大而优雅的工具,能够用于对函数进行修饰、增强和包装。本文将介绍Python中装饰器的基本概念、工作原理以及实际应用,帮助读者更好地理解和运用这一技术,提升代码的可读性和灵活性。
|
1天前
|
并行计算 数据处理 Python
Python中的高级函数应用与实践
本文将深入探讨Python中高级函数的概念、特性及应用场景,通过实际案例演示,帮助读者更好地理解和运用高级函数,提升代码的灵活性和可维护性。
|
2天前
|
存储 编解码 算法
MoviePy,一个超强的Python库
MoviePy,一个超强的Python库
|
2天前
|
Python
patchworklib,一款极其强大的 Python 库!
patchworklib,一款极其强大的 Python 库!
|
2天前
|
存储 数据库 计算机视觉
Python图像处理库:学会Pillow再也不用PS啦
Python图像处理库:学会Pillow再也不用PS啦
|
2天前
|
机器学习/深度学习 数据采集 自然语言处理
Python编程的十大神奇依赖库
Python编程的十大神奇依赖库
|
2天前
|
存储 Python
一文掌握python数组字典dict()的全部用法(零基础学python(三))
一文掌握python数组字典dict()的全部用法(零基础学python(三))
11 0
|
2天前
|
存储 索引 Python
一文掌握python数组numpy的全部用法(零基础学python(二))
一文掌握python数组numpy的全部用法(零基础学python(二))
10 0

相关产品

  • 云迁移中心