Python matplotlib 实时数据动画

简介: Python matplotlib 实时数据动画

213a044b965a47c0800340a4cac22cdf.gif


一、实时数据可视化的数据准备



import pandas as pd 
import matplotlib.pyplot as plt 
# 设置一般的样例数据
x=[0,1,2,3,4] # x轴数据
y=[0,1,2,3,4] # y轴数据
# 设置多维数据
dev_x=[25,26,27,28,29,30] # 开发者的年龄
dev_y=[7567,8789,8900,11560,16789,25231] #收入情况
py_dev_y=[5567,6789,9098,15560,20789,23231] # python开发者
js_dev_y=[6567,7789,8098,12356,14789,20231] # java开发者
devsalary=pd.DataFrame([dev_x,dev_y,py_dev_y,js_dev_y])


01.设置图表主题样式


之前用的都是经典样式:

plt.style.use('classic')
plt.plot(x,y)

9792f56f26984d83a13282a44ddf06f3.png

现在换成538样式:

plt.style.use('fivethirtyeight') # 538统计样式
from IPython.display import HTML # 在实现动态的过程中必须引入的库
plt.plot(x,y)

e41c54eb6596423594028326862d5e8e.png


02 使用样例数据


import random
from itertools import count
index=count()
x1=[]
y1=[]
x1.append(next(index))
y1.append(random.randint(0,50))
plt.plot(x1,y1)

先来试试手动的效果:

5ea065eee11e4c788732b1b2de14ea2e.gif

该效果即我们要实现的动画。

def animate(i):
    x1.append(next(index))
    y1.append(random.randint(0,50))
    plt.plot(x1,y1)
from matplotlib.animation import FuncAnimation
ani=FuncAnimation(plt.gcf(),animate,interval=1000) # interval=1000代表时间间隔,数值越小,则时间间隔越短
HTML(ani.to_jshtml())

64299f7bc36a4656a8b1934cdd11838f.gif

上面的视频是演示数据的生成过程,会发现每次变化的时候颜色都会变化。

在视频底下还有一张完整的图片,表示在时间节点之中Python生成的序列数:

5ca0bf6398434ff6bdb73144324d8af6.png

1ad51281fc3e4306be864b9e1945a088.png

如果想要每次变化的时候图像都在原有基础上变化,则使用如下:

plt.cla()

2238ddb0b09e44d08c7572463305e6a7.png

def animate(i):
    x1.append(next(index))
    y1.append(random.randint(0,50))
    plt.cla() #每次变化的时候都是在原有基础上改变 
    plt.plot(x1,y1)
9d72f1cded3f4a249c9ce09ee2d1d6bd.gif

二、使用电影票房数据制作动画



动态实时的数据往往和时间轴有关联,本次使用的数据: cnboo1.xlsx

我放在我的码云,需要的请移步 :cnboo1.xlsx

import pandas as pd 
cnbodf=pd.read_excel('cnboo1.xlsx')
cnbodfsort=cnbodf.sort_values(by=['BO'],ascending=False)
def mkpoints(x,y):
    return len(str(x))*(y/25)-3
cnbodfsort['points']=cnbodfsort.apply(lambda x:mkpoints(x.BO,x.PERSONS),axis=1)
cnbodfgb=cnbodfsort.groupby("TYPE").mean(["bo","prices","persons","points"])
cnbodfsort['type1']=cnbodfsort['TYPE'].apply(lambda x:x.split("/")[0])
cnbodfgb=cnbodfsort.groupby(["type1"])["ID","BO","PRICE","PERSONS","points"].mean()
cnbodfgbsort=cnbodfgb.sort_values("BO",ascending=False)

d337b0b4e0704aeda00bb47da5c9e7e8.png


x=cnbodfsort['PERSONS']
y=cnbodfsort['PRICE']
plt.plot(x,y)

当我们分别以人数和电影票价格作为x和y轴的数据是,可以看到数据是较为紊乱的:

6a3fd3e1d988410186244529275f6e96.png

而动态实时的数据线往往是和时间有关联的。

因此我们需要把数据进行重新定义。

y1=y.to_list()
X1=x.to_list()
def animate(i):
    x1.append(next(index))
    y1.append(y[random.randint(1,49)]) # 表示在50条电影数据中随机选择一条
    plt.cla() #每次变化的时候都是在原有基础上改变 
    plt.plot(x1,y1)
x1=[]
y1=[]
ani=FuncAnimation(plt.gcf(),animate,interval=1000)
HTML(ani.to_jshtml())

最终呈现的效果如下:

b6aefce1a6c84e6eb6c4204f9cb51c93.gif


相关文章
|
6天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
25天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
9天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
19 1
|
14天前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
42 5
|
10天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
11天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
18天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
37 5
|
23天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
51 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
1月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
46 2
|
9天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
19 0