一起加入这次沉浸式学习吧,本次分享的方案基本上包好了结构化数据比赛的基本流程:数据分析、数据预处理,特征工程、模型训练以及模型融合,大家可以留在周末学习一波。
比赛名称:Sberbank Russian Housing Market
比赛链接:https://www.kaggle.com/c/sberbank-russian-housing-market
竞赛背景
住房成本需要消费者和开发商的大量投资。 在规划预算时(无论是个人预算还是公司预算),任何一方不到最后就是不确定其中哪一项是最大开支。 俄罗斯最早、最大的银行Sberbank通过预测房地产价格来帮助客户预测预算,因此租户,开发商和贷方在签订租约或购买建筑物时更加相互信任。
尽管俄罗斯的住房市场相对稳定,但该国动荡的经济形势使得根据公寓价格预测成为一项独特的挑战。 房屋数量(如卧室数量和位置)之间复杂的相互关系足以使价格预测变得复杂。 加上不稳定的经济因素,意味着Sberbank及其客户需要的不仅仅是其机器学习库中的简单回归模型。
在这场竞赛中,Sberbank向Kagglers提出挑战,要求他们开发使用多种特征来预测房地产价格的算法。 竞争对手将依靠丰富的数据集,其中包括住房数据和宏观经济模式。 准确的预测模型将使Sberbank在不确定的经济环境中为其客户提供更多的确定性。
赛题解析
这种竞赛目的是预测每一处房产的销售价格。目标变量在train.csv中称为price_doc。训练数据为2011年8月至2015年6月,测试集为2015年7月至2016年5月。该数据集还包括俄罗斯经济和金融部门的总体状况信息,因此您可以专注于为每个房产生成准确的价格预测,而无需猜测商业周期将如何变化。
竞赛数据
- train.csv,test.csv:有关单个交易的信息。 这些行由“ id”字段索引,该字段引用单个事务(特定属性在单独的事务中可能出现多次)。 这些文件还包括有关每个属性的本地区域的补充信息。
- macro.csv:有关俄罗斯宏观经济和金融部门的数据(可以根据“时间戳”与训练集和测试集合并)
- data_dictionary.txt:其他数据文件中可用字段的说明
- sample_submission.csv:格式正确的示例提交文件
其中字段比较多,我们可以通过data_dictionary
文件可以发现至少有200+个字段,所以本次比赛的数据还是比较丰富,比较客观,同时也具有研究价值。
数据分析
来源:https://www.kaggle.com/sudalairajkumar/simple-exploration-notebook-sberbank
- 房产价格分布
我们将价格按照从小到大排序,画出如下每处房产价格分布:
plt.figure(figsize=(8,6)) plt.scatter(range(train_df.shape[0]), np.sort(train_df.price_doc.values)) plt.xlabel('index', fontsize=12) plt.ylabel('price', fontsize=12) plt.show()
- 房产价格随着时间变化趋势
train_df['yearmonth'] = train_df['timestamp'].apply(lambda x: x[:4]+x[5:7]) grouped_df = train_df.groupby('yearmonth')['price_doc'].aggregate(np.median).reset_index() plt.figure(figsize=(12,8)) sns.barplot(grouped_df.yearmonth.values, grouped_df.price_doc.values, alpha=0.8, color=color[2]) plt.ylabel('Median Price', fontsize=12) plt.xlabel('Year Month', fontsize=12) plt.xticks(rotation='vertical') plt.show()
- 特征重要性较高的特征
因为有292个变量,让我们构建一个基本的xgboost模型,然后先研究重要的变量。
for f in train_df.columns: if train_df[f].dtype=='object': lbl = preprocessing.LabelEncoder() lbl.fit(list(train_df[f].values)) train_df[f] = lbl.transform(list(train_df[f].values)) train_y = train_df.price_doc.values train_X = train_df.drop(["id", "timestamp", "price_doc"], axis=1) xgb_params = { 'eta': 0.05, 'max_depth': 8, 'subsample': 0.7, 'colsample_bytree': 0.7, 'objective': 'reg:linear', 'eval_metric': 'rmse', 'silent': 1 } dtrain = xgb.DMatrix(train_X, train_y, feature_names=train_X.columns.values) model = xgb.train(dict(xgb_params, silent=0), dtrain, num_boost_round=100) # plot the important features # fig, ax = plt.subplots(figsize=(12,18)) xgb.plot_importance(model, max_num_features=50, height=0.8, ax=ax) plt.show()
因此,数据特征中的重要性前5个变量及其描述为:
full_sq-以平方米为单位的总面积,包括凉廊,阳台和其他非住宅区 life_sq-居住面积(平方米),不包括凉廊,阳台和其他非居住区 floor-对于房屋,建筑物的当前层数 max_floor-建筑物中的总楼层数 build_year-建造年份
full_seq与房产价格的分布
ulimit = np.percentile(train_df.price_doc.values, 99.5) llimit = np.percentile(train_df.price_doc.values, 0.5) train_df['price_doc'].ix[train_df['price_doc']>ulimit] = ulimit train_df['price_doc'].ix[train_df['price_doc']<llimit] = llimit col = "full_sq" ulimit = np.percentile(train_df[col].values, 99.5) llimit = np.percentile(train_df[col].values, 0.5) train_df[col].ix[train_df[col]>ulimit] = ulimit train_df[col].ix[train_df[col]<llimit] = llimit plt.figure(figsize=(12,12)) sns.jointplot(x=np.log1p(train_df.full_sq.values), y=np.log1p(train_df.price_doc.values), size=10) plt.ylabel('Log of Price', fontsize=12) plt.xlabel('Log of Total area in square metre', fontsize=12) plt.show()
life_sq与房产价格分布
col = "life_sq" train_df[col].fillna(0, inplace=True) ulimit = np.percentile(train_df[col].values, 95) llimit = np.percentile(train_df[col].values, 5) train_df[col].ix[train_df[col]>ulimit] = ulimit train_df[col].ix[train_df[col]<llimit] = llimit plt.figure(figsize=(12,12)) sns.jointplot(x=np.log1p(train_df.life_sq.values), y=np.log1p(train_df.price_doc.values), kind='kde', size=10) plt.ylabel('Log of Price', fontsize=12) plt.xlabel('Log of living area in square metre', fontsize=12) plt.show()
楼层与房产价格中位数分布
grouped_df = train_df.groupby('floor')['price_doc'].aggregate(np.median).reset_index() plt.figure(figsize=(12,8)) sns.pointplot(grouped_df.floor.values, grouped_df.price_doc.values, alpha=0.8, color=color[2]) plt.ylabel('Median Price', fontsize=12) plt.xlabel('Floor number', fontsize=12) plt.xticks(rotation='vertical') plt.show()
Top 1% 代码分享
- Data.py: 数据清洗以及特征工程
- Exploration.py: 数据分析
- Model.py: XGBoost模型
- BaseModel.py: 基线模型:RandomForestRegressor、GradientBoostingRegressor、Lasso等
- lightGBM.py: lightGBM模型
- Stacking.py: model stacking (final model):模型融合
因为代码比较清晰简洁,非常适合数据挖掘的新手解读学习,其中作者写的Stacking也是非常漂亮,我们可以感受下:
Stacking是通过一个元分类器或者元回归器整合多个模型的集成学习技术。基础模型利用整个训练集做训练,元模型利用基础模型做特征进行训练。一般Stacking多使用不同类型的基础模型
import numpy as np import pandas as pd from sklearn.model_selection import ShuffleSplit, cross_val_score from sklearn.cross_validation import KFold from sklearn.ensemble import AdaBoostRegressor, RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import Imputer from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import LinearRegression import xgboost as xgb import lightgbm as lgb from sklearn.preprocessing import StandardScaler # 封装一下lightgbm让其可以在stacking里面被调用 class LGBregressor(object): def __init__(self,params): self.params = params def fit(self, X, y, w): y /= 10000000 # self.scaler = StandardScaler().fit(y) # y = self.scaler.transform(y) split = int(X.shape[0] * 0.8) indices = np.random.permutation(X.shape[0]) train_id, test_id = indices[:split], indices[split:] x_train, y_train, w_train, x_valid, y_valid, w_valid = X[train_id], y[train_id], w[train_id], X[test_id], y[test_id], w[test_id], d_train = lgb.Dataset(x_train, y_train, weight=w_train) d_valid = lgb.Dataset(x_valid, y_valid, weight=w_valid) partial_bst = lgb.train(self.params, d_train, 10000, valid_sets=d_valid, early_stopping_rounds=50) num_round = partial_bst.best_iteration d_all = lgb.Dataset(X, label = y, weight=w) self.bst = lgb.train(self.params, d_all, num_round) def predict(self, X): return self.bst.predict(X) * 10000000 # return self.scaler.inverse_transform(self.bst.predict(X)) # 封装一下xgboost让其可以在stacking里面被调用 class XGBregressor(object): def __init__(self, params): self.params = params def fit(self, X, y, w=None): if w==None: w = np.ones(X.shape[0]) split = int(X.shape[0] * 0.8) indices = np.random.permutation(X.shape[0]) train_id, test_id = indices[:split], indices[split:] x_train, y_train, w_train, x_valid, y_valid, w_valid = X[train_id], y[train_id], w[train_id], X[test_id], y[test_id], w[test_id], d_train = xgb.DMatrix(x_train, label=y_train, weight=w_train) d_valid = xgb.DMatrix(x_valid, label=y_valid, weight=w_valid) watchlist = [(d_train, 'train'), (d_valid, 'valid')] partial_bst = xgb.train(self.params, d_train, 10000, early_stopping_rounds=50, evals = watchlist, verbose_eval=100) num_round = partial_bst.best_iteration d_all = xgb.DMatrix(X, label = y, weight=w) self.bst = xgb.train(self.params, d_all, num_round) def predict(self, X): test = xgb.DMatrix(X) return self.bst.predict(test) # This object modified from Wille on https://dnc1994.com/2016/05/rank-10-percent-in-first-kaggle-competition-en/ class Ensemble(object): def __init__(self, n_folds, stacker, base_models): self.n_folds = n_folds self.stacker = stacker self.base_models = base_models def fit_predict(self, trainDf, testDf): X = trainDf.drop(['price_doc', 'w'], 1).values y = trainDf['price_doc'].values w = trainDf['w'].values T = testDf.values X_fillna = trainDf.drop(['price_doc', 'w'], 1).fillna(-999).values T_fillna = testDf.fillna(-999).values folds = list(KFold(len(y), n_folds=self.n_folds, shuffle=True)) S_train = np.zeros((X.shape[0], len(self.base_models))) S_test = np.zeros((T.shape[0], len(self.base_models))) for i, clf in enumerate(self.base_models): print('Training base model ' + str(i+1) + '...') S_test_i = np.zeros((T.shape[0], len(folds))) for j, (train_idx, test_idx) in enumerate(folds): print('Training round ' + str(j+1) + '...') if clf not in [xgb1,lgb1]: # sklearn models cannot handle missing values. X = X_fillna T = T_fillna X_train = X[train_idx] y_train = y[train_idx] w_train = w[train_idx] X_holdout = X[test_idx] # w_holdout = w[test_idx] # y_holdout = y[test_idx] clf.fit(X_train, y_train, w_train) y_pred = clf.predict(X_holdout) S_train[test_idx, i] = y_pred S_test_i[:, j] = clf.predict(T) S_test[:, i] = S_test_i.mean(1) self.S_train, self.S_test, self.y = S_train, S_test, y # for diagnosis purpose self.corr = pd.concat([pd.DataFrame(S_train),trainDf['price_doc']],1).corr() # correlation of predictions by different models. # cv_stack = ShuffleSplit(n_splits=6, test_size=0.2) # score_stacking = cross_val_score(self.stacker, S_train, y, cv=cv_stack, n_jobs=1, scoring='neg_mean_squared_error') # print(np.sqrt(-score_stacking.mean())) # CV result of stacking self.stacker.fit(S_train, y) y_pred = self.stacker.predict(S_test) return y_pred if __name__ == "__main__": trainDf = pd.read_csv('train_featured.csv') testDf = pd.read_csv('test_featured.csv') params1 = {'eta':0.05, 'max_depth':5, 'subsample':0.8, 'colsample_bytree':0.8, 'min_child_weight':1, 'gamma':0, 'silent':1, 'objective':'reg:linear', 'eval_metric':'rmse'} xgb1 = XGBregressor(params1) params2 = {'booster':'gblinear', 'alpha':0,# for gblinear, delete this line if change back to gbtree 'eta':0.1, 'max_depth':2, 'subsample':1, 'colsample_bytree':1, 'min_child_weight':1, 'gamma':0, 'silent':1, 'objective':'reg:linear', 'eval_metric':'rmse'} xgb2 = XGBregressor(params2) RF = RandomForestRegressor(n_estimators=500, max_features=0.2) ETR = ExtraTreesRegressor(n_estimators=500, max_features=0.3, max_depth=None) Ada = AdaBoostRegressor(DecisionTreeRegressor(max_depth=15),n_estimators=200) GBR = GradientBoostingRegressor(n_estimators=200,max_depth=5,max_features=0.5) LR =LinearRegression() params_lgb = {'objective':'regression','metric':'rmse', 'learning_rate':0.05,'max_depth':-1,'sub_feature':0.7,'sub_row':1, 'num_leaves':15,'min_data':30,'max_bin':20, 'bagging_fraction':0.9,'bagging_freq':40,'verbosity':0} lgb1 = LGBregressor(params_lgb) E = Ensemble(5, xgb2, [xgb1,lgb1,RF,ETR,Ada,GBR]) prediction = E.fit_predict(trainDf, testDf) output = pd.read_csv('test.csv') output = output[['id']] output['price_doc'] = prediction output.to_csv(r'Ensemble\Submission_Stack.csv',index=False)
我们还可以学习到什么
一般每个比赛的discussion部分,我们可以看到前排方案的讨论交流,感觉读了他们分享的总结以及简介比代码获得收益更大
链接为:https://www.kaggle.com/c/sberbank-russian-housing-market/discussion/35684
从第一名分享的方案中,对我收益比较大的是:
- 没有对目标变量直接预测,而是对单位平方米的价格进行预测,之后转化
- 尝试很多的独立模型,这里指的是因为他们发现有两个变量放在一块导致模型差异很大(Investment 和OwnerOccupier),然后将两个变量置于两组不同的特征输入给模型
- 去除异常值,单独训练模型
更多资料可以阅读:https://www.one-tab.com/page/Yv_JbxErRU6yE3oa7MsgnQ