电路板设计中射频反馈线的优化

简介: 最近,我们的信号完整性小组 要求重新设计现有的5千兆赫接地共面波导射频反馈线,以提高客户板上Wi-Fi子系统的性能。测量结果表明,给水线阻抗的阻抗约为38欧姆。

最近,我们的信号完整性小组 要求重新设计现有的5千兆赫接地共面波导射频反馈线,以提高客户板上Wi-Fi子系统的性能。测量结果表明,给水线阻抗的阻抗约为38欧姆。

在模拟之前,最初的设计发现了几个问题,包括:

未能说明焊锡罩对痕阻抗的影响

在跟踪阻抗计算中未能考虑到电路板蚀刻

在附近的非参考地面平面上不正确的切割

对现有的进给线进行了仿真,在仿真结果的基础上改进了共面几何,以满足50欧姆的阻抗要求。因此,客户报告说,使用新的PCB大大提高了Wi-Fi的性能。

本文讨论了初始的共平面几何  PCB设计 ,上面提到的三个项目的效果,以及最终的共平面几何。为不同共平面配置展示了e-场图,以说明与接地共平面设计可能发生的有意和无意耦合。

基础共面波导

由于Wi-Fi和蓝牙集成技术在现代电路板上的普及性,在电路板设计中,基于共平面的波导越来越普遍。GCPW比传统微带输电线路的一些优点如下:

损失较低:更多的电子现场线路在空气中流动,而不是通过损耗的多金属板材料流动。这可以使在5千兆赫运行的PCB设计使用成本较低的FR-4。

隔离性:GCPW线路比微带线路提供更多的隔离性,因为现场线路更紧密地限制。

弹性几何:GCPW阻抗主要受轨迹与共面地面结构间隙的控制。这使得与微带输电线路相比,跟踪宽度具有更大的灵活性。

较低的铜表面粗糙度损失:微带线中的电流倾向于沿痕底集中,这是铜最粗糙的地方(促进附着于介质)。适当设计的Gcpw输电线路往往将电流集中在跟踪的边缘,在那里表面是光滑的。

高级匹配组件放置:大多数蓝牙或Wi-Fi射频反馈线需要系列和/或并行匹配组件。由于Gcpw的地面与轨迹相邻,平行组件可以直接安装在轨迹和共面地面之间,这就消除了寄生虫与通道的关联。

许多工具可以用来计算GCPW结构的阻抗,但互联网上可用的免费工具通常对可以分析的结构类型有限制。基本结构通常可以计算,但近铜结构的影响通常需要EM模拟,以正确建模。

在电路板设计中,优化射频反馈线(特别是针对WiFi子系统)是提高整体性能的关键环节。以下是一些优化策略:

一、选择适当的传输线类型

· 接地共面波导(GCPW):GCPW在PCB设计中变得越来越普遍,特别是在现代电路板上Wi-Fi和蓝牙集成日益普及的情况下。GCPW相比微带线具有更低的损耗、更好的隔离度以及灵活的几何形状等优势。GCPW的阻抗主要由迹线和共面接地结构之间的间隙控制,这提供了更大的迹线宽度灵活性。

二、优化GCPW结构的阻抗

· 阻抗计算与模拟:使用专业的电磁场求解器工具(如Ansoft的Q2D)进行模拟,以确定满足50欧姆阻抗要求的共面几何形状。通过模拟确定最佳间隙和接地平面切口的宽度。

· 考虑阻焊层和凹蚀的影响:在模拟中考虑阻焊层和凹蚀对走线阻抗的影响,以得到更准确的阻抗值。

三、优化射频反馈线的布局与布线

· 最小化射频路径长度:通过调整元器件布局,使射频路径的长度最小化,同时确保输入远离输出,以减少信号干扰和损耗。

· 避免信号交叉:射频信号走线应尽可能短而直,避免与其他信号线交叉。如果必须交叉,应沿着它们之间的射频走线布置一层接地连接到主地线,以减少干扰。

· 接地过孔的使用:在射频信号线周围添加尽可能多的接地过孔,以降低接地阻抗并减少电磁辐射。

四、其他优化措施

· 电源去耦:确保射频电路的电源得到充分去耦,以减少电源噪声对射频信号的影响。

· 金属屏蔽罩的使用:在必要时使用金属屏蔽罩将射频能量屏蔽在特定区域内,以减少干扰和辐射。

· 优化PCB堆叠:最有效的电路板堆叠方法是将主接地面安排在表层下的第二层,并尽可能将RF线走在表层上。

相关文章
|
7月前
|
数据采集 存储 传感器
LabVIEW开发监控聚变实验脉冲电源
LabVIEW开发监控聚变实验脉冲电源
40 0
反馈放大电路与功率放大电路(模电速成)
反馈放大电路与功率放大电路(模电速成)
137 0
反馈放大电路
反馈放大电路是一种常见的电路设计技术,用于提高放大电路的性能和稳定性。它通过将部分输出信号反馈到输入端,以调节放大器的增益和频率响应,从而实现对输入信号的放大和处理。
80 0
反馈放大电路的作用及其应用
一、什么是反馈放大电路 反馈放大电路是一种通过引入反馈来增强放大器性能的电路。它将放大器的输出信号与输入信号进行比较,然后将比较结果作为反馈信号输入到放大器的输入端,以调整放大器的增益和频率响应。 反馈放大电路的作用是改善放大器的性能,包括增加增益稳定性、减小非线性失真、扩展频率响应范围、降低噪声等。通过选择适当的反馈类型和参数,可以实现不同的放大器性能优化。 常见的反馈放大电路包括电压反馈放大电路和电流反馈放大电路。电压反馈放大电路将放大器输出信号与输入信号进行比较,然后将比较结果作为反馈信号输入到放大器的输入端。电流反馈放大电路则是将放大器输出信号与输入信号进行比较,然后将比较结果作为反馈
272 0
|
传感器 数据采集 测试技术
如何优化振弦读数模块的开发
1. 选择合适的振弦传感器:不同的应用场景需要不同类型的振弦传感器。例如,高温或高压环境下需要使用耐高温或耐高压的传感器。因此,首先需要了解应用场景和技术需求,然后选择适合的传感器。
如何优化振弦读数模块的开发
【sop】基于灵敏度分析的有源配电网智能软开关优化配置(Matlab代码实现)
【sop】基于灵敏度分析的有源配电网智能软开关优化配置(Matlab代码实现)
101 0
【sop】基于灵敏度分析的有源配电网智能软开关优化配置[升级1](Matlab代码实现)
【sop】基于灵敏度分析的有源配电网智能软开关优化配置[升级1](Matlab代码实现)
110 0
【弱电综合课程设计】三菱PLC经步进驱动器控制步进电机调速和正反转(硬件连接+梯形图)
【弱电综合课程设计】三菱PLC经步进驱动器控制步进电机调速和正反转(硬件连接+梯形图)
【弱电综合课程设计】三菱PLC经步进驱动器控制步进电机调速和正反转(硬件连接+梯形图)
|
传感器
工程监测多通道振弦模拟信号采集仪VTN MODBUS指令驱动测量模式
当工作模式拨码开关的第 2 和第 4 为 ON 时,设备工作于 MODBUS 指令驱动测量模式。在此模式下,设备始终处于开机状态,振弦测量停止。当收到 MODBUS 协议的传感器通道数据读取指令时自动开始测量并在测量结束后响应通道值读取指令的数据包。
工程监测多通道振弦模拟信号采集仪VTN MODBUS指令驱动测量模式