深度学习笔记总结(2) 改善深层神经网络:超参数调试、 正则化以及优化

简介: 深度学习笔记总结(2) 改善深层神经网络:超参数调试、 正则化以及优化

1 第一周 深度学习的实用层面


1.1 训练集、验证集、测试集

  • 训练集
    用来训练模型内参数的数据集
  • 验证集
    用于在训练过程中检验模型的状态、收敛情况。
    验证集通常用于调整超参数,根据几组模型验证集上的表现决定哪组超参数拥有最好的性能。同时也可以用评价指标评估模型、比如准确率、召回率、平均误差。
  • 测试集
    用于评估模型的泛化能力


在机器学习中,我们通常将样本分成训练集,验证集和测试集三部分,数据 集规模相对较小,适用传统的划分比例,数据集规模较大的,验证集和测试集要小于数据总 量的 20%或 10%。


90.png


reference:https://zhuanlan.zhihu.com/p/35394638


1.2 偏差、方差


  • 偏差
    偏差是指模型的预测值期望与我们试图预测的正确值之间的差异。具有高偏差的模型很少关注训练数据并且过度简化模型。它总是导致训练和测试数据的差别很大。

    91.png


  • 方差
    描述的是通过学习拟合出来的结果自身的不稳定性。具有高差异的模型非常注重训练数据,并且没有概括它以前从未见过的数据。结果,这些模型在训练数据上表现很好,但在测试数据上具有高错误率。


92.png


  • 高方差:过拟合;高偏差:欠拟合

    93.png


94.png

  • 方差、偏差均衡


如果我们的模型太简单并且参数很少,那么它可能具有高偏差和低方差。另一方面,如果我们的模型具有大量参数,那么它将具有高方差和低偏差。因此,我们需要找到正确/良好的平衡,而不会过度拟合和欠拟合数据。


真实值y与预测值f(X)之间的关键词,e数据本身的噪音带来的

为误差项,符合均值为0的正态分布。


95.png


我们引入均方误差,最优化均方误差即可找到方差和偏差的最优平衡点:



96.png


为了建立一个好的模型,我们需要在偏差和方差之间找到一个很好的平衡点,以便最大限度地减少总误差。


97.png

reference:


Understanding the Bias-Variance Tradeoff

谈谈 Bias-Variance Tradeoff


1.3 正则化

1.4 dropout正则化

1.5 数据扩增


通过扩增训练数据来解决过拟合,但扩增数 据代价高,而且有时候我们无法扩增数据,但我们可以通过添加这类图片来增加训练集。例 如,水平翻转图片,并把它添加到训练集。


1.6 early stopping

1.7 归一化输入

训练神经网络,其中一个加速训练的方法就是归一化输入。归一化需要两个步骤:

1.零均值;2.归一化方差。

相关文章
|
9天前
|
负载均衡 网络协议 网络性能优化
动态IP代理技术详解及网络性能优化
动态IP代理技术通过灵活更换IP地址,广泛应用于数据采集、网络安全测试等领域。本文详细解析其工作原理,涵盖HTTP、SOCKS代理及代理池的实现方法,并提供代码示例。同时探讨配置动态代理IP后如何通过智能调度、负载均衡、优化协议选择等方式提升网络性能,确保高效稳定的网络访问。
70 2
|
15天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
149 80
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
23天前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
52 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
9天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
11天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
21天前
|
域名解析 缓存 网络协议
优化Lua-cURL:减少网络请求延迟的实用方法
优化Lua-cURL:减少网络请求延迟的实用方法
|
20天前
|
数据采集 监控 安全
公司网络监控软件:Zig 语言底层优化保障系统高性能运行
在数字化时代,Zig 语言凭借出色的底层控制能力和高性能特性,为公司网络监控软件的优化提供了有力支持。从数据采集、连接管理到数据分析,Zig 语言确保系统高效稳定运行,精准处理海量网络数据,保障企业信息安全与业务连续性。
39 4
|
5天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
下一篇
开通oss服务