High-precision Depth Estimation with the 3D LiDAR and Stereo Fusion(使用3D雷达和立体融合的高精度深度估计)思维导图

简介: High-precision Depth Estimation with the 3D LiDAR and Stereo Fusion(使用3D雷达和立体融合的高精度深度估计)思维导图

9ccc0629ff234acd8c338ede1a872497.png

目录
打赏
0
0
0
0
78
分享
相关文章
目标检测的Tricks | 【Trick7】数据增强——Mosaic(马赛克)
目标检测的Tricks | 【Trick7】数据增强——Mosaic(马赛克)
2310 0
目标检测的Tricks | 【Trick7】数据增强——Mosaic(马赛克)
|
12天前
|
RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
52 20
RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
|
14天前
|
YOLOv11改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
YOLOv11改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题
45 11
人体姿态估计技术的理解(Human Pose Estimination)
人体姿态估计技术的理解(Human Pose Estimination)
171 0
基于人体姿势估计的舞蹈检测(AI Dance based on Human Pose Estimation)
基于人体姿势估计的舞蹈检测(AI Dance based on Human Pose Estimation)
131 0
【多模态融合】CRN 多视角相机与Radar融合 实现3D检测、目标跟踪、BEV分割 ICCV2023
本文介绍使用雷达与多视角相机融合,实现3D目标检测、3D目标跟踪、道路环境BEV分割,它是来自ICCV2023的。CRN,全称是Camera Radar Net,是一个多视角相机-雷达融合框架。 通过融合多视角相机和雷达的特性,生成语义丰富且空间精确的BEV特征图。实现3D物体检测、跟踪和BEV分割任务。
867 1
Google Earth Engine(GEE)RADD - RAdar for Detecting Deforestation-基于Sentinel-1的10米空间尺度的湿润热带森林扰动预警数据集
Google Earth Engine(GEE)RADD - RAdar for Detecting Deforestation-基于Sentinel-1的10米空间尺度的湿润热带森林扰动预警数据集
83 0
【论文解读】F-PointNet 使用RGB图像和Depth点云深度 数据的3D目标检测
​F-PointNet 提出了直接处理点云数据的方案,但这种方式面临着挑战,比如:如何有效地在三维空间中定位目标的可能位置,即如何产生 3D 候选框,假如全局搜索将会耗费大量算力与时间。 F-PointNet是在进行点云处理之前,先使用图像信息得到一些先验搜索范围,这样既能提高效率,又能增加准确率。 论文地址:Frustum PointNets for 3D Object Detection from RGB-D Data  开源代码:https://github.com/charlesq34/frustum-pointnets
987 0
Stereo-Detection:适合新手的双目测距开源项目
Stereo-Detection:适合新手的双目测距开源项目
1471 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等