【SpringBoot DB 系列】Redis 高级特性之 Bitmap 使用姿势及应用场景介绍

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 前面介绍过 redis 的五种基本数据结构,如 String,List, Set, ZSet, Hash,这些属于相对常见了;在这些基本结果之上,redis 还提供了一些更高级的功能,如 geo, bitmap, hyperloglog,pub/sub,本文将主要介绍 Bitmap 的使用姿势以及其适用场景,主要知识点包括

网络异常,图片无法展示
|


前面介绍过 redis 的五种基本数据结构,如 String,List, Set, ZSet, Hash,这些属于相对常见了;在这些基本结果之上,redis 还提供了一些更高级的功能,如 geo, bitmap, hyperloglog,pub/sub,本文将主要介绍 Bitmap 的使用姿势以及其适用场景,主要知识点包括


  • bitmap 基本使用
  • 日活统计应用场景中 bitmap 使用姿势
  • 点赞去重应用场景中 bitmap 使用姿势
  • 布隆过滤器 bloomfilter 基本原理及体验 case


I. 基本使用



1. 配置



我们使用 SpringBoot 2.2.1.RELEASE来搭建项目环境,直接在pom.xml中添加 redis 依赖


<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
复制代码


如果我们的 redis 是默认配置,则可以不额外添加任何配置;也可以直接在application.yml配置中,如下


spring:
  redis:
    host: 127.0.0.1
    port: 6379
    password:
复制代码


2. 使用姿势



bitmap 主要就三个操作命令,setbitgetbit以及 bitcount


a. 设置标记


setbit,主要是指将某个索引,设置为 1(设置 0 表示抹去标记),基本语法如下


# 请注意这个index必须是数字,后面的value必须是0/1
setbit key index 0/1
复制代码


对应的 SpringBoot 中,借助 RestTemplate 可以比较容易的实现,通常有两种写法,都可以


@Autowired
private StringRedisTemplate redisTemplate;
/**
 * 设置标记位
 *
 * @param key
 * @param offset
 * @param tag
 * @return
 */
public Boolean mark(String key, long offset, boolean tag) {
    return redisTemplate.opsForValue().setBit(key, offset, tag);
}
public Boolean mark2(String key, long offset, boolean tag) {
    return redisTemplate.execute(new RedisCallback<Boolean>() {
        @Override
        public Boolean doInRedis(RedisConnection connection) throws DataAccessException {
            return connection.setBit(key.getBytes(), offset, tag);
        }
    });
}
复制代码


上面两种写法的核心区别,就是 key 的序列化问题,第一种写法使用默认的 jdk 字符串序列化,和后面的getBytes()会有一些区别,关于这个,有兴趣的小伙伴可以看一下我之前的博文: RedisTemplate 配置与使用#序列化问题


b. 判断存在与否


getbit key index,如果返回 1,表示存在否则不存在


/**
 * 判断是否标记过
 *
 * @param key
 * @param offest
 * @return
 */
public Boolean container(String key, long offest) {
    return redisTemplate.opsForValue().getBit(key, offest);
}
复制代码


c. 计数


bitcount key,统计和

/**
 * 统计计数
 *
 * @param key
 * @return
 */
public long bitCount(String key) {
    return redisTemplate.execute(new RedisCallback<Long>() {
        @Override
        public Long doInRedis(RedisConnection redisConnection) throws DataAccessException {
            return redisConnection.bitCount(key.getBytes());
        }
    });
}
复制代码


3. 应用场景



前面的基本使用比较简单,在介绍 String 数据结构的时候也提过,我们重点需要关注的是 bitmap 的使用场景,它可以干嘛用,什么场景下使用它会有显著的优势


  • 日活统计
  • 点赞
  • bloomfilter


上面三个场景虽有相似之处,但实际的应用场景还是些许区别,接下来我们逐一进行说明


a. 日活统计


统计应用或网站的日活,这个属于比较常见的 case 了,如果是用 redis 来做这个事情,首先我们最容易想到的是 Hash 结构,一般逻辑如下


  • 根据日期,设置 key,如今天为 2020/10/13, 那么 key 可以为 app_20_10_13
  • 其次当用户访问时,设置 field 为 userId, value 设置为 true
  • 判断日活则是统计 map 的个数hlen app_20_10_13


上面这个逻辑有毛病么?当然没有问题,但是想一想,当我们的应用做的很 nb 的时候,每天的日活都是百万,千万级时,这个内存开销就有点吓人了

接下来我们看一下 bitmap 可以怎么做


  • 同样根据日期设置 key
  • 当用户访问时,index 设置为 userId,setbit app_20_10_13 uesrId 1
  • 日活统计 bitcount app_20_10_13


简单对比一下上面两种方案


当数据量小时,且 userid 分布不均匀,小的为个位数,大的几千万,上亿这种,使用 bitmap 就有点亏了,因为 userId 作为 index,那么 bitmap 的长度就需要能容纳最大的 userId,但是实际日活又很小,说明 bitmap 中间有大量的空白数据


反之当数据量很大时,比如百万/千万,userId 是连续递增的场景下,bitmap 的优势有两点:1.存储开销小, 2.统计总数快


c. 点赞


点赞的业务,最主要的一点是一个用户点赞过之后,就不能继续点赞了(当然某些业务场景除外),所以我们需要知道是否可以继续点赞


上面这个 hash 当然也可以实现,我们这里则主要讨论一下 bitmap 的实现逻辑


  • 比如我们希望对一个文章进行点赞统计,那么我们根据文章 articleId 来生成 redisKey=like_1121,将 userId 作为 index
  • 首先是通过getbit like_1121 userId 来判断是否点赞过,从而限制用户是否可以操作


Hash 以及 bitmap 的选择和上面的考量范围差不多


d. 布隆过滤器 bloomfilter


布隆过滤器可谓是大名鼎鼎了,我们这里简单的介绍一下这东西是啥玩意


  • 底层存储为一个 bitmap
  • 当来一个数据时,经过 n 个 hash 函数,得到 n 个数值
  • 将 hash 得到的 n 个数值,映射到 bitmap,标记对应的位置为 1


如果来一个数据,通过 hash 计算之后,若这个 n 个值,对应的 bitmap 都是 1,那么表示这个数据可能存在;如果有一个不为 1,则表示这个数据一定不存在


请注意:不存在时,是一定不存在;存在时,则不一定


从上面的描述也知道,bloomfilter 的底层数据结构就是 bitmap,当然它的关键点在 hash 算法;根据它未命中时一定不存在的特性,非常适用于缓存击穿的问题解决

体验说明


Redis 的布隆过滤器主要针对>=4.0,通过插件的形式提供,项目源码地址为: github.com/RedisBloom/…,下面根据 readme 的说明,简单的体验一下 redis 中 bloomfilter 的使用姿势


# docker 方式安装
docker run -p 6379:6379 --name redis-redisbloom redislabs/rebloom:latest
# 通过redis-cli方式访问
docker exec -it redis-redisbloom bash
# 开始使用
# redis-cli
127.0.0.1:6379> keys *
(empty array)
127.0.0.1:6379> bf.add newFilter hello
(integer) 1
127.0.0.1:6379> bf.exists newFilter hello
(integer) 1
127.0.0.1:6379> bf.exists newFilter hell
(integer) 0
复制代码


bloomfilter 的使用比较简单,主要是两个命令bf.add添加元素,bf.exists判断是否存在,请注意它没有删除哦


4. 小结



bitmap 位图属于一个比较精巧的数据结构,通常在数据量大的场景下,会有出现的表现效果;redis 本身基于 String 数据结构来实现 bitmap 的功能支持,使用方式比较简单,基本上就下面三个命令


  • setbit key index 1/0: 设置
  • getbit key index: 判断是否存在
  • bitcount key: 计数统计


本文也给出了 bitmap 的三个常见的应用场景


  • 日活统计:主要借助bitcount来获取总数(后面会介绍,在日活十万百万以上时,使用 hyperLogLog 更优雅)
  • 点赞: 主要借助setbit/getbit来判断用户是否赞过,从而实现去重
  • bloomfilter: 基于 bitmap 实现的布隆过滤器,广泛用于去重的业务场景中(如缓存穿透,爬虫 url 去重等)


总的来讲,bitmap 属于易用,巧用的数据结构,用得好即能节省内存也可以提高效率,用得不好貌似也不会带来太大的问题




相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
监控 NoSQL Java
场景题:百万数据插入Redis有哪些实现方案?
场景题:百万数据插入Redis有哪些实现方案?
44 1
场景题:百万数据插入Redis有哪些实现方案?
|
2月前
|
JavaScript 安全 Java
如何使用 Spring Boot 和 Ant Design Pro Vue 实现动态路由和菜单功能,快速搭建前后端分离的应用框架
本文介绍了如何使用 Spring Boot 和 Ant Design Pro Vue 实现动态路由和菜单功能,快速搭建前后端分离的应用框架。首先,确保开发环境已安装必要的工具,然后创建并配置 Spring Boot 项目,包括添加依赖和配置 Spring Security。接着,创建后端 API 和前端项目,配置动态路由和菜单。最后,运行项目并分享实践心得,包括版本兼容性、安全性、性能调优等方面。
173 1
|
2月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
78 6
|
1月前
|
JavaScript 安全 Java
如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个具有动态路由和菜单功能的前后端分离应用。
本文介绍了如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个具有动态路由和菜单功能的前后端分离应用。首先,创建并配置 Spring Boot 项目,实现后端 API;然后,使用 Ant Design Pro Vue 创建前端项目,配置动态路由和菜单。通过具体案例,展示了如何快速搭建高效、易维护的项目框架。
111 62
|
17天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
34 8
|
21天前
|
JSON 安全 算法
Spring Boot 应用如何实现 JWT 认证?
Spring Boot 应用如何实现 JWT 认证?
48 8
|
19天前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
32 1
|
1月前
|
JavaScript 安全 Java
如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个前后端分离的应用框架,实现动态路由和菜单功能
本文介绍了如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个前后端分离的应用框架,实现动态路由和菜单功能。首先,确保开发环境已安装必要的工具,然后创建并配置 Spring Boot 项目,包括添加依赖和配置 Spring Security。接着,创建后端 API 和前端项目,配置动态路由和菜单。最后,运行项目并分享实践心得,帮助开发者提高开发效率和应用的可维护性。
70 2
|
27天前
|
Java Docker 微服务
利用Docker容器化部署Spring Boot应用
利用Docker容器化部署Spring Boot应用
45 0
|
2月前
|
JavaScript 安全 Java
如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个具有动态路由和菜单功能的前后端分离应用
【10月更文挑战第8天】本文介绍了如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个具有动态路由和菜单功能的前后端分离应用。首先,通过 Spring Initializr 创建并配置 Spring Boot 项目,实现后端 API 和安全配置。接着,使用 Ant Design Pro Vue 脚手架创建前端项目,配置动态路由和菜单,并创建相应的页面组件。最后,通过具体实践心得,分享了版本兼容性、安全性、性能调优等注意事项,帮助读者快速搭建高效且易维护的应用框架。
53 3