TensorFlow教程(6) tf.Variable() 和tf.get_variable()

简介: TensorFlow教程(6) tf.Variable() 和tf.get_variable()

1 简介


tf.Variable()

tf.Variable(initial_value=None, trainable=True, collections=None, validate_shape=True, 
caching_device=None, name=None, variable_def=None, dtype=None, expected_shape=None, 
import_scope=None)


tf.get_variable()

tf.get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, 
trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, 
custom_getter=None)


2 区别


1、使用tf.Variable时,如果检测到命名冲突,系统会自己处理。使用tf.get_variable()时,系统不会处理冲突,而会报错

import tensorflow as tf
w_1 = tf.Variable(3,name="w_1")
w_2 = tf.Variable(1,name="w_1")
print w_1.name
print w_2.name
#输出
#w_1:0
#w_1_1:0

import tensorflow as tf
w_1 = tf.get_variable(name="w_1",initializer=1)
w_2 = tf.get_variable(name="w_1",initializer=2)
#错误信息
#ValueError: Variable w_1 already exists, disallowed. Did
#you mean to set reuse=True in VarScope?


2、基于这两个函数的特性,当我们需要共享变量的时候,需要使用tf.get_variable()。在其他情况下,这两个的用法是一样的

import tensorflow as tf
with tf.variable_scope("scope1"):
    w1 = tf.get_variable("w1", shape=[])
    w2 = tf.Variable(0.0, name="w2")
with tf.variable_scope("scope1", reuse=True):
    w1_p = tf.get_variable("w1", shape=[])
    w2_p = tf.Variable(1.0, name="w2")
print(w1 is w1_p, w2 is w2_p)
#输出
#True  False


由于tf.Variable() 每次都在创建新对象,所有reuse=True 和它并没有什么关系。对于get_variable(),来说,如果已经创建的变量对象,就把那个对象返回,如果没有创建变量对象的话,就创建一个新的。


以上内容来自于:tensorflow学习笔记(二十三):variable与get_variable


3 实例


import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
x1 = tf.truncated_normal([200, 100], name='x1')
x2 = tf.truncated_normal([200, 100], name='x2')
def two_hidden_layers_1(x):
    assert x.shape.as_list() == [200, 100]
    w1 = tf.Variable(tf.random_normal([100, 50]), name='h1_weights')
    b1 = tf.Variable(tf.zeros([50]), name='h1_biases')
    h1 = tf.matmul(x, w1) + b1
    assert h1.shape.as_list() == [200, 50]
    w2 = tf.Variable(tf.random_normal([50, 10]), name='h2_weights')
    b2 = tf.Variable(tf.zeros([10]), name='2_biases')
    logits = tf.matmul(h1, w2) + b2
    return logits
def two_hidden_layers_2(x):
    assert x.shape.as_list() == [200, 100]
    w1 = tf.get_variable('h1_weights', [100, 50], initializer=tf.random_normal_initializer())
    b1 = tf.get_variable('h1_biases', [50], initializer=tf.constant_initializer(0.0))
    h1 = tf.matmul(x, w1) + b1
    assert h1.shape.as_list() == [200, 50]
    w2 = tf.get_variable('h2_weights', [50, 10], initializer=tf.random_normal_initializer())
    b2 = tf.get_variable('h2_biases', [10], initializer=tf.constant_initializer(0.0))
    logits = tf.matmul(h1, w2) + b2
    return logits
def fully_connected(x, output_dim, scope):
    with tf.variable_scope(scope, reuse=tf.AUTO_REUSE) as scope:
        w = tf.get_variable('weights', [x.shape[1], output_dim], initializer=tf.random_normal_initializer())
        b = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
        return tf.matmul(x, w) + b
def two_hidden_layers_3(x):
    h1 = fully_connected(x, 50, 'h1')
    h2 = fully_connected(h1, 10, 'h2')
    return h2
# with tf.variable_scope('two_layers') as scope:
#     logits1 = two_hidden_layers_1(x1) 
#     # scope.reuse_variables()
#     logits2 = two_hidden_layers_1(x2)
# 不会报错
# ---------------
# with tf.variable_scope('two_layers') as scope:
#     logits1 = two_hidden_layers_2(x1)
#     # scope.reuse_variables()
#     logits2 = two_hidden_layers_2(x2)
# 会报错
# ---------------
with tf.variable_scope('two_layers') as scope:
    logits1 = two_hidden_layers_3(x1)
    # scope.reuse_variables()
    logits2 = two_hidden_layers_3(x2)
# 不会报错
# -------
writer = tf.summary.FileWriter('./graphs/cool_variables', tf.get_default_graph())
writer.close()


相关文章
|
3月前
|
缓存 TensorFlow 算法框架/工具
TensorFlow学习笔记(一): tf.Variable() 和tf.get_variable()详解
这篇文章详细介绍了TensorFlow中`tf.Variable()`和`tf.get_variable()`的使用方法、参数含义以及它们之间的区别。
114 0
|
机器学习/深度学习 PyTorch TensorFlow
深度学习框架教程:介绍一些流行的深度学习框架 (如TensorFlow、PyTorch等)
深度学习框架教程:介绍一些流行的深度学习框架 (如TensorFlow、PyTorch等)
175 0
|
XML TensorFlow API
TensorFlow Object Detection API 超详细教程和踩坑过程
TensorFlow Object Detection API 超详细教程和踩坑过程
240 1
|
机器学习/深度学习 并行计算 Ubuntu
系统类配置(二)【深度学习装机详细教程-ubuntu16.04下安装cuda9.0+nvidia-384+cudnn7.1.4+tensorflow1.9。】(下)
系统类配置(二)【深度学习装机详细教程-ubuntu16.04下安装cuda9.0+nvidia-384+cudnn7.1.4+tensorflow1.9。】(下)
216 0
|
机器学习/深度学习 并行计算 Ubuntu
系统类配置(二)【深度学习装机详细教程-ubuntu16.04下安装cuda9.0+nvidia-384+cudnn7.1.4+tensorflow1.9。】(上)
系统类配置(二)【深度学习装机详细教程-ubuntu16.04下安装cuda9.0+nvidia-384+cudnn7.1.4+tensorflow1.9。】(上)
167 0
|
机器学习/深度学习 存储 前端开发
使用Tensorflow实现的MTCNN和MobileFaceNet实现的人脸识别系统GUI界面 附代码 详细教程
使用Tensorflow实现的MTCNN和MobileFaceNet实现的人脸识别系统GUI界面 附代码 详细教程
373 0
使用Tensorflow实现的MTCNN和MobileFaceNet实现的人脸识别系统GUI界面 附代码 详细教程
BXA
|
机器学习/深度学习 自然语言处理 算法
Python深度学习:TensorFlow基础教程
深度学习是一种机器学习方法借助多层神经网络进行大规模数据分析和处理,以获取隐藏在数据中的特征模式,常应用于图像识别、语音识别、自然语言处理等领域
BXA
186 0
|
机器学习/深度学习 PyTorch TensorFlow
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(三)
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(三)
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(三)
|
机器学习/深度学习 Web App开发 IDE
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(一)
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(一)
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(一)
|
机器学习/深度学习 TensorFlow 算法框架/工具
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(二)
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(二)
史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(二)