史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(一)

简介: 史上最全深度学习环境配置教程---适用于各种深度学习框架---Pytorh TensorFlow Keras-等和各种python环境(一)

首先我们先说一下软件下载问题:

我们要配置环境,一定要下载软件,我个人是非常主张所有软件都采用谷歌浏览器下载的,事实也证明这样做会带来很多好处,基本上程序猿都是使用谷歌浏览器的,我不建议使用其他浏览器采用我的方法,而且谷歌浏览器的盗版很多,我这里给出正确的下载链接。


Google Chrome 网络浏览器


image.png


直接下载安装即可,默认路径就行,反正也不大,千万别坚持用什么360等等,谷歌浏览器的好处自己慢慢体会。


然后我们就要下载我们需要的深度学习环境软件了,我们的环境是基于anaconda和pycharm的,这也是现在大多数搞深度学习的程序员喜欢的,当然也可以单纯用anaconda或者pycharm进行开发,但是弊端你自己慢慢体会,我这里只说我认为对的方法,anaconda+pycharm。


简单解释一下两个软件的功能,anaconda提供基本上你能想要的所有库,通过anaconda下载所有库,然后pycharm是IDE,就是所谓的写程序的编译环境,我们通过anaconda下载所有库,然后导入pycharm进行使用和程序开发。这就组成了我们所谓的深度学习环境,或者你配置的是其他环境也行,反正都一样。


说到这里,我们已经对我们需要配置的软件有了一点了解,下面我们给出anaconda和pycharm的下载链接,之前帮师弟师妹们配置环境,发现他们都从网上乱找这些软件,甚至从微信公众号上搞百度云的下载链接,总之会出现各种问题,其实我们之间去官网下载就行,反正anaconda是免费的不用破解,pycharm社区版的也不用破解(社区版的完全可以满足需求,至少我用了三年了一直没啥问题)。


anaconda下载链接:Anaconda | The World's Most Popular Data Science Platform


image.png

点Download直接下载即可,我默认大家都是windows系统,其他的系统的请另选他处。


pycharm的下载链接:PyCharm: the Python IDE for Professional Developers by JetBrains


image.png

点击DOWNLOAD ,则进入到下一个界面,如下,

image.png


左边的Professional是专业版的,我们下载的是右边的Community社区版的即可。点右边黑色的Download即可,这就是正在下载了。


image.png

好了,等我们软件下载成功我们就要进入深度学习这个天坑了,做好被恶心的准备,如果你网速不好下载失败了,多点几次就行了,或者换个网速好的地方,这也没办法,多尝试吧。


image.png

软件下载好了,我们首先安装anaconda,看了网上那么多啰嗦的anaconda安装教程会导致我刚开始学的时候看的头大,我决定来个简单点的教程,干净利落的解决所有问题,其他详细的问题,遇到了再慢慢解决就行。


anaconda的安装:

双击运行


                  image.png


点击next,


                  image.png


点击I Agree


                image.png


点击Next


              image.png


这里是安装路径,可以修改,别让路径中有中文即可,我这里是瞎弄的,因为我电脑上有环境了,所以走个形式给大家演示一下。


然后点Next即可


image.png


这里按照我弄的来就行,如果你想深究参数的意义,可以自行百度研究。这里点Install


image.png

这是正在安装的过程,等就行了,有时候可能会有点慢。


image.png

最后界面上不论你的选项是否跟我的一样,你都不要选,不要选,这两个对号不要打。


好了,到这里你的anaconda就安装完毕了。 点击的电脑的开始


                      ,image.png


会出现这一大堆,默认win10啊,其他的也差不多,这说明安装好了。

相关文章
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
将Keras训练好的.hdf5模型转换为TensorFlow的.pb模型,然后再转换为TensorRT支持的.uff格式,并提供了转换代码和测试步骤。
115 3
深度学习之格式转换笔记(三):keras(.hdf5)模型转TensorFlow(.pb) 转TensorRT(.uff)格式
|
3月前
|
机器学习/深度学习 TensorFlow API
使用 TensorFlow 和 Keras 构建图像分类器
【10月更文挑战第2天】使用 TensorFlow 和 Keras 构建图像分类器
|
4月前
|
机器学习/深度学习 数据挖掘 大数据
大数据时代的“淘金术”:Python数据分析+深度学习框架实战指南
在大数据时代,数据被视为新财富源泉,而从海量信息中提取价值成为企业竞争的核心。本文通过对比方式探讨如何运用Python数据分析与深度学习框架实现这一目标。Python凭借其强大的数据处理能力及丰富库支持,已成为数据科学家首选工具;而TensorFlow和PyTorch等深度学习框架则为复杂模型构建提供强有力的技术支撑。通过融合Python数据分析与深度学习技术,我们能在各领域中发掘数据的无限潜力。无论是商业分析还是医疗健康,掌握这些技能都将为企业和社会带来巨大价值。
168 6
|
3月前
|
机器学习/深度学习 移动开发 TensorFlow
深度学习之格式转换笔记(四):Keras(.h5)模型转化为TensorFlow(.pb)模型
本文介绍了如何使用Python脚本将Keras模型转换为TensorFlow的.pb格式模型,包括加载模型、重命名输出节点和量化等步骤,以便在TensorFlow中进行部署和推理。
155 0
|
4月前
|
机器学习/深度学习 供应链 TensorFlow
深度学习实战营:TensorFlow+Python,打造你的数据驱动决策引擎
【9月更文挑战第13天】在数据爆炸时代,企业日益依赖精准分析进行决策。深度学习凭借其卓越的特征提取与模式识别能力,成为构建数据驱动决策引擎的关键技术。本项目通过TensorFlow和Python,利用LSTM构建零售业销量预测模型,优化库存管理和营销策略。首先确保安装TensorFlow,然后使用Keras API搭建模型,并通过训练、评估和部署流程,展示深度学习在数据驱动决策中的强大应用潜力,助力企业提升经营效率。
55 3
|
5月前
|
Apache 开发者 Java
Apache Wicket揭秘:如何巧妙利用模型与表单机制,实现Web应用高效开发?
【8月更文挑战第31天】本文深入探讨了Apache Wicket的模型与表单处理机制。Wicket作为一个组件化的Java Web框架,提供了多种模型实现,如CompoundPropertyModel等,充当组件与数据间的桥梁。文章通过示例介绍了模型创建及使用方法,并详细讲解了表单组件、提交处理及验证机制,帮助开发者更好地理解如何利用Wicket构建高效、易维护的Web应用程序。
70 0
|
5月前
|
机器学习/深度学习 API TensorFlow
深入解析TensorFlow 2.x中的Keras API:快速搭建深度学习模型的实战指南
【8月更文挑战第31天】本文通过搭建手写数字识别模型的实例,详细介绍了如何利用TensorFlow 2.x中的Keras API简化深度学习模型构建流程。从环境搭建到数据准备,再到模型训练与评估,展示了Keras API的强大功能与易用性,适合初学者快速上手。通过简单的代码,即可完成卷积神经网络的构建与训练,显著降低了深度学习的技术门槛。无论是新手还是专业人士,都能从中受益,高效实现模型开发。
59 0
|
5月前
|
TensorFlow 算法框架/工具
【Tensorflow+Keras】学习率指数、分段、逆时间、多项式衰减及自定义学习率衰减的完整实例
使用Tensorflow和Keras实现学习率衰减的完整实例,包括指数衰减、分段常数衰减、多项式衰减、逆时间衰减以及如何通过callbacks自定义学习率衰减策略。
99 0
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。