白日梦的Elasticsearch实战笔记,ES账号免费借用、32个查询案例、15个聚合案例、7个查询优化技巧。(二)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 白日梦的Elasticsearch实战笔记,ES账号免费借用、32个查询案例、15个聚合案例、7个查询优化技巧。(二)

3.3、干货!32个查询案例!#


下面一起看一下有哪些query dsl的使用方式。(查询的返回值和上面我们一起看的那个是一样的,所以下面的重点是怎么查,而不是怎么看返回值哈)


1、查询指定index下的全部doc


# _search是关键字,下文基本每个查询都会有它,不再赘述了哈
GET /your_index/your_type/_search
{
  "query": { "match_all": {} }
}


2、针对name字段进行全文检索(match查询)


ES会将用户将输入的字符串通过分词器拆解开,然后去倒排索引中扫描匹配(下一篇文章白日梦的笔记会重新杀回ES涉及的核心概念,包括这个倒排索引)。在倒排索引中哪怕匹配上了一个也会将结果返回。


GET /yourIndex/yourType/_search
{
   "query": { 
     # match表示全文检索,所以白日梦会被分词成 白日、梦、白日梦
     # 也就是说当前的match会匹配出name中有“白日” 或者“梦” 或者“白日梦”的doc
     "match": {
       "name":"白日梦"
     } 
   }
}
# 实际上,match query底层会被转换成下面的格式进行检索
#
# {
#    "bool":{
#        "should":[
#         {"term":{"title":"白日"}},
#         {"term":{"title":"白日梦"}},
#         {"term":{"title":"梦"}}
#     ]
#  }
# }
#


3、全文检索:手动控制全文检索的精度


GET /your_index/your_type/_search
{
   "query": { 
     "match": {
        "name":{
            "query":"bairi meng",
            # and表示,只有同时出现bairi meng两个词的doc才会被命中
            # 如果不加and限制,则bairi和meng之间是或的关系,只要出现一个就行
            "operator":"and",  
        }
     }
    }
}
# 添加上operator 操作会被ES转换成下面的格式,将上面的should转换成must
#
# {
#    "bool":{
#        "must":[
#         {"term":{"title":"bairi"}},
#         {"term":{"title":"meng"}}
#     ]
#  }
# }


4、去掉全文检索的长尾


# 去长尾
GET /your_index/your_type/_search
{
   "query": { 
     "match": {
        "name":{
            "query":"欢迎关注白日梦!",
            "operator":"and",  
            # 上面的query可能被分词成: 欢迎、关注、白日梦、欢迎关注、关注白日梦这五个词。
            # 默认来说只要命中其中的一个词,那个doc就会被返回,所以有长尾现象。
            # 去长尾:控制至少命中3/4个词的doc才算是真正命中。
            "minimum_should_match":"75%" 
        }
     }
    }
}
# 添加上 minimum_should_match 操作会被ES转换成下面的格式 
#
# {
#    "bool":{
#        "should":[
#         {"term":{"title":"白日"}},
#         {"term":{"title":"梦"}}
#     ],
#       "minimum_should_match":3
#  }
# }
#


5、全文检索:通过boost控制权重。


如下Case:要求doc的name字段必须包含:“关注”,于此同时,如果doc的name字段中包含:“白日梦”,则将这个doc的权重提高为3,如果name字段中包含了“公众号” 再提高它的权重2。经过这样的处理,name字段中包含:“关注白日梦公众号” 的doc的权重就最高,它在搜索结果中的排名就越靠前。


GET /your_index/your_type/_search
{
   "query": { 
     "bool":{
        "must":{
          "match": {
             "name":{
                # 默认情况下,所有字段的权重都是样的,都是1
                "query":"关注",
              }
            }
         },
         "should":[
            {
            "match": {
             "name":{
                "query":"白日梦",
                # 将name字段的权重提升成3
                "boost":3 
              }
            }
            },
            {
            "match": {
             "name":{
                "query":"公众号",
                # 将name字段的权重提升成3
                # 默认情况下,所有字段的权重都是样的,都是1
                "boost":2  
              }
            }
          }
        ]
      }
   }
}


6、稍微复杂一点的多条件查询:bool查询


GET /your_index/your_type/_search
{ 
  "query": {
    # 比如你的查询比较复杂,涉及到很多的子查询,那你可以考虑通过bool查询包裹这些子查询
    # 每一个子查询都会计算出这个doc针对于它这种查询得到的相关性得分。
    # 最终由bool查询将这些得分合并为一个最终的得分
    "bool": {
      # 必须匹配到XXX, 并且会得出相关性得分
      # address中必须包含mill 
      "must": [ {"match": { "address": "mill" } }, 
      ],
      # 在满足must的基础上,should条件不满足也可以,但是如果也匹配上了,相关性得分会增加
      # 如果没有must的话,should中的条件必须满足一个
      "should": [{ "match": { "address": "lane" } }],
      "must_not": [ # 一定不包含谁
        { "match": { "address": "mill" } },
      ]
    }
  }
}


7、bool查询+去长尾。


# bool查询+去长尾
GET /your_index/your_type/_search
{ 
  "query": {
    "bool":{
      "should":[
        "match":{"name":"白日梦1"},
        "match":{"name":"白日梦2"},
        "match":{"name":"白日梦3"},
      ],
      "minimum_should_match":3
    }
  }
}


8、best fields策略:取多个query中得分最高的得分作为doc的最终得分。


一个query中是存在多个match的(我们称它为多字段查询),而且每个match都会贡献自己的相关性得分,也就是说doc最终的相关性得分是通过这多个match贡献的相关性得分通过一定的机制计算出来的。而且相关性得分越高,文档在搜索结果中就越靠前。

这时,如果你不希望让doc的最终得分是通过综合所有的match计算得出的,可以使用dis_max查询。它会取所有match中得分最高的match当作doc的最终得分。


GET /your_index/your_type/_search
{
   "query": { 
     # 这种用法不容忽略
     # 直接取下面多个query中得分最高的query当成最终得分
     "dis_max": {
        "queries":[
           {"match":{"name":"白日梦"}},
           {"match":{"content":"关注白日梦!"}}
        ]
     }
   }
}


9、基于 tie_breaker 优化dis_max


上面的Case中有提到这个dis_max查询,这个dis_max也是实现best field的关键,即:它会取所有match中得分最高的match当作doc的最终得分。

而这个例子中的tie_breaker会重新让dis_max考虑到其他field的得分影响,比如下面的0.4,表示最终的doc得分会考虑其他match的影响,但是它的影响会被弱化成原来的0.4。


GET /your_index/your_type/_search
{   
    # 基于 tie_breaker 优化dis_max
    # tie_breaker可以使dis_max考虑其它field的得分影响
    "query": { 
     # 直接取下面多个query中得分最高的query当成最终得分
     # 这也是best field策略
     "dis_max": { 
        "queries":[
           {"match":{"name":"关注"}},
           {"match":{"content":"白日梦"}}
        ],
        "tie_breaker":0.4
     }
    }
}


10、同时在你指定的多个字段中进行检索:multi_match


GET /your_index/your_type/_search
{    
  # 查询多个,在下面指定的两个字段中检索含有 “this is a test“ 的doc
  "query": { 
    "multi_match" : {
      "query":    "this is a test", 
      "fields": [ "subject", "message" ] 
    }
  }
}


11、使用multi_match query简化dis_max


# 还是这个dis_max query,如下:
GET /your_index/your_type/_search
{   
    # 基于 tie_breaker 优化dis_max
    # tie_breaker可以使dis_max考虑其它field的得分影响
    "query": { 
     # 直接取下面多个query中得分最高的query当成最终得分
     # 这也是best field策略
     "dis_max": { 
        "queries":[
           {"match":{"name":"关注"}},
           {"match":{"content":"白日梦"}}
        ],
        "tie_breaker":0.4
     }
    }
} 
# 使用multi_match query简化写法如下:
GET /your_index/your_type/_search
{    
    "query": { 
       "multi_match":{
           "query":"关注 白日梦",
            # 指定检索的策略 best_fields(因为dis_max就是best field策略)
           "type":"best_fields",
            # content^2 表示增加权重,相当于:boost2
           "fields":["name","content^2"],
           "tie_breaker":0.4,
           "minimum_should_match":3
       }
    }
}


12、most field策略和上面说的best field策略是不同的,因为best field策略说的是:优先返回某个field匹配到更多关键字的doc。


优先返回有更多的field匹配到你给定的关键字的doc。而不是优先返回某个field完全匹配你给定关键字的doc

另外most_fields不支持使用minimum_should_match去长尾。


GET /your_index/your_type/_search
{    
    # most_fields策略、优先返回命中更多关键词的doc
    # 如下从title、name、content中搜索包含“赐我白日梦”的doc
    "query": { 
       "multi_match":{
           "query":"赐我白日梦",
            # 指定检索的策略most_fields
           "type":"most_fields",
           "fields":["title","name","content"]
       }
    }
}


13、cross_fields策略:如下Case


GET /your_index/your_type/_search
{    
    "query": { 
       "multi_match":{
           "query":"golang java",
            # cross_fields 要求golang:必须在title或者在content中出现
            # cross_fields 要求java:必须在title或者在content中出现
           "type":"cross_fields",
           "fields":["title","content"]
       }
    }
}


14、查询空


GET /your_index/your_type/_search
{   
  "query": { 
    "match_none": {}
  }
}


15、精确匹配


# 使用trem指定单个字段进行精确匹配
GET /your_index/your_type/_search
{   
  # 精确匹配name字段为白日梦的doc
  "query": { 
    "constant_score":{
        "filter":{
          "term": {
            "name":"白日梦"
         } 
      }
    }
  } 
}
# 使用terms指定在多个字段中进行精确匹配
# 下面的例子相当于SQL: where name in ('tom','jerry')
GET /your_index/your_type/_search
{
   # 精确匹配
  "query": { 
    "constant_score":{
        "filter":{
          "terms": {
            "想搜索的字段名":[
                  "tom",
                  "jerry"
            ]
         } 
      }
    }
  } 
}


16、短语检索:要求doc的该字段的值和你给定的值完全相同,顺序也不能变,所以它的精确度很高,但是召回率低。


GET /your_index/your_type/_search
{   
  # 短语检索 
  # 顺序的保证是通过 term position来保证的
  # 精准度很高,但是召回率低
  "query": {  
          # 只有name字段中包含了完整的 白日梦 这个doc才算命中
          # 不能是单个 ”白日“,也不能是单个的 “梦”,也不能是“白日xxx梦”
          # 要求 短语相连,且顺序也不能变
         "match_phrase": { 
             "name": "白日梦"
          }
    }
}


17、提高短语检索的召回率


如果使用match_phase进行短语检索,本质上就是要求doc中的字段值和给定的值完全相同,即使是顺序不同也不行。但是为了提高召回率如你又想容忍短语匹配可以存在一定的误差,比如你希望搜索 “i love world” 时,能够搜索出''world love i"

这时可以通过slop来实现这个功能,slop可以帮你让指定短语中的词最多经过slop次移动后如果能匹配某个doc,也把这个doc当作结果返回给用户。


GET /your_index/your_type/_search
{    
   # 短语检索
   "query": {
         # 指定了slop就不再要求搜索term之间必须相邻,而是可以最多间隔slop距离。
         # 在指定了slop参数的情况下,离关键词越近,移动的次数越少, relevance score 越高。
         # match_phrase +  slop 和 proximity match 近似匹配作用类似。
         # 平衡精准度和召回率。
         "match_phrase": { 
             "address": "mill lane",
             # 指定搜索文本中的几个term经过几次移动后可以匹配到一个doc
             "slop":2
          } 
  }
}


18、混合使用match和match_phrase 平衡精准度和召回率


GET /your_index/your_type/_search
{    
   # 混合使用match和match_phrase 平衡精准度和召回率
   "query": { 
      "bool": {  
        "must":  {
            # 全文检索虽然可以匹配到大量的文档,但是它不能控制词条之间的距离
            # 可能i love world在doc1中距离很近,但是它却被ES排在结果集的后面
            # 它的性能比match_phrase和proximity高
            "match": {
              "title": "i love world" 
            } 
         },
        "should": {
            # 因为slop有个特性:词条之间间隔的越近,移动的次数越少 最终的得分就越高
            # 于是可以借助match_phrase+slop感知term position的功能
            # 实现为距离相近的doc贡献分数,让它们靠前排列
            "match_phrase":{
                "title":{
                    "query":"i love world",
                    "slop":15
                }
            }
        }
    }
}


19、使用rescore_query重打分。提高精准度和召回率。


GET /your_index/your_type/_search
{    
   # 重打分机制
   "query": { 
       "match":{
           "title":{
               "query":"i love world",
               "minimum_should_match":"50%"
           }
       },
       # 对全文检索的结果进行重新打分
       "rescore":{
           # 对全文检索的前50条进行重新打分
           "window_size":50,  
           "query": { 
               # 关键字
               "rescore_query":{ 
                    # match_phrase + slop 感知 term persition,贡献分数
                    "match_phrase":{ 
                       "title":{
                           "query":"i love world",
                           "slop":50
                     }
                }
          }
       } 
   }
}


20、前缀匹配:搜索 user字段以"白日梦"开头的 doc


GET /your_index/your_type/_search
{    
  # 前缀匹配,相对于全文检索,前缀匹配是不会对前缀进行分词的。
  # 而且每次匹配都会扫描整个倒排索引,直到扫描完一遍才会停下来
  # 前缀搜索不会计算相关性得分所有的doc的得分都是1
  # 前缀越短能匹配到的doc就越多,性能越不好
  "query": { 
    "prefix" : { "user" : "白日梦" }
  }
}


21、前缀搜索 + 添加权重


GET /your_index/your_type/_search
{    
  # 前缀搜索 + 添加权重
  "query": { 
    "prefix" : { 
      "name" :  { 
        "value" : "白日梦", 
        "boost" : 2.0 
      }
    }
  }
}


22、通配符搜索


GET /your_index/your_type/_search
{    
  # 通配符搜索
  "query": {
        "wildcard" : { 
            "title" : "白日梦的*笔记"
        }
   }
}
GET /your_index/your_type/_search
{    
  # 通配符搜索
  "query": {
        "wildcard" : {
          "title" : { 
            "value" : "白日梦的*笔记", 
            "boost" : 2.0 
          } 
      }
   }
}


23、正则搜索


GET /your_index/your_type/_search
{    
   # 正则搜索  
   "query": {
        "regexp":{
            "name.first":{
                "value":"s.*y",
                "boost":1.2
            }
        }
    }
}


24、搜索推荐:match_phrase_prefix,最终实现的效果类似于百度搜索,当用户输入一个词条后,将其它符合条件的词条的选项推送出来。


match_phrase_prefix和match_phrase相似,但是区别是它会将最后一个term当作前缀,发起一次搜索。因此它也叫search time 搜索推荐,因为它是在你搜索的时候又发起了一次新的请求来拿到推荐的内容,它的效率整体也是比较低的。


GET /your_index/your_type/_search
{    
   "query": {
      # 前缀匹配(关键字)
      "match_phrase_prefix" : {
        "message" : {
                # 比如你搜索关注白日梦,经过分词器处理后会得到最后一个词是:“白日梦”
                # 然后他会拿着白日梦再发起一次搜索,于是你就可能搜到下面的内容:
                # “关注白日梦的微信公众号”
                # ”关注白日梦的圈子“
                "query" : "关注白日梦",
                # 指定前缀最多匹配多少个term,超过这个数量就不在倒排索引中检索了,提升性能
                "max_expansions" : 10,
                # 提高召回率,使用slop调整term persition,贡献得分
                "slop":10
            }
       } 
  }
}


25、Function Score Query


Function Score Query 实际上是一种让用户可以自定义实现一种对doc得分进行增强的手段。比如:用户可以自定义一个function_secore 函数,然后指定将这个field的值和ES计算出来的分数相乘,作为doc的最终得分。


# Case1
GET /your_index/your_type/_search
{    
  "query": {
        "function_score": {
            # 正常写一个query
            "query": { 
              "match": {
                "query":"es"
              } 
            },
            # 自定义增强策略
            “field_value_factor”:{
              # 对检索出的doc的最终得分都要multiply上star字段的值
              "field":"star",
            }
            "boost_mode":"multiply",
            # 限制最大的得分不能超过maxboost指定的值。
            "maxboost":3
        }
    }
}
# Case2
GET /your_index/your_type/_search
{    
  "query": {
        "function_score": {
            "query": { 
              "match": {
                "query":"es"
              } 
            },
            “field_value_factor”:{
              # 对检索出的doc的最终得分都要multiply上star字段的值
              # 这时有个问题,假如说star字段的值为0,那最终结果岂不是都为0?
              "field":"star",
              # 所以考虑使用modifier优化一下
              # newScore = oldScore + log(1+star)
              "modifier":"log1p",
            }
            "boost_mode":"multiply",
            "maxboost":3
        }
    }
}
# Case3
GET /your_index/your_type/_search
{    
  "query": {
        "function_score": {
            "query": { 
              "match": {
                "query":"es"
              } 
            },
            “field_value_factor”:{
              "field":"star",
              "modifier":"log1p",
              # 使用factor将star字段对权重的影响降低成1/10
              # newScore = oldScore + log( 1 + star*factor )
              "factor":0.1
            }
            "boost_mode":"multiply",
            "maxboost":3
        }
    }
}
# 补充boost_mode有哪些中选项
multiply、sum、min、max、replace


26、Fuzzy Query 模糊查询会提供容错的处理


GET /your_index/your_type/_search
{    
   # Fuzzy Query 模糊查询会提供容错的处理
   "query": {
        "fuzzy" : {
            "user" : {
                "value": "白日梦",
                "boost": 1.0,
                # 最大的纠错次数,一般设为之AUTO
                "fuzziness": 2,
                # 不会被“模糊化”的初始字符数。这有助于减少必须检查的术语的数量。默认值为0。
                "prefix_length": 0,
                # 模糊查询将扩展到的最大项数。默认值为50
                "max_expansions": 100 
                # 是否支持模糊变换(ab→ba)。默认的是false
                transpositions:true 
            }
        }
    }
}


27、解读一个实用的案例


GET /your_index/your_type/_search
{ 
  "query": {
    # 比如你的查询比较复杂,涉及到很多的子查询,那你可以考虑通过bool查询包裹这些子查询
    # 每一个子查询都会计算出这个doc针对于它这种查询得到的相关性得分。
    # 最终由bool查询将这些得分合并为一个最终的得分
    "bool": {
      # 必须匹配到XXX, 并且会得出相关性得分
      # address中必须包含mill 
      "must": [ {
          "match": {
          "address": "mill" 
           } 
        }, 
      ],
      # 在满足must的基础上,should条件不满足也可以,但是如果也匹配上了,相关性得分会增加
      # 如果没有must的话,should中的条件必须满足一个
      "should": [
        { "match": { "address": "lane" } }
      ],
      "must_not": [ # 一定不包含谁
        { "match": { "address": "mill" } },
      ],
      # filter中的表达式仅仅对数据进行过滤,但是不会影响搜索结果的相关度得分。
      # 所以你如果不希望添加的过滤条件影响最终的doc排序的话,可以将条件放在filter中。
      # query是会计算doc的相关度得分的,得分越高,越靠前。
      "filter": { 
        "range": { # 按照范围过滤
          "balance": { # 指定过滤的字段
            "gte": 20000s # 高于20000
            "lte": 30000  # 低于30000
          }
        }
      }
    }
  }


默认的排序规则是按照_score降序排序,但像上面说的那样,如果全部都是filter的话它就不会计算得分,也就是说所有的得分全是1,这时候就需要定制排序规则,定义的语法我在上面写了


28、查询名称中包含“白日梦”的doc,并且按照star排序


高亮、排序、分页以及_source 指定需要的字段都可以进一步作用在query的结果上。


# ES默认的排序规则是按照 _score 字段降序排序的
# 但是ES允许你像下面这样定制排序规则
GET /your_index/your_type/_search
{
   "query": { 
     "match": {"name":"白日 梦"}
   },
  # 指定排序条件
  "sort":[
    # 指定排序字段为 star
    {"star":"desc"}
  ]
}


29、分页查询


如:从第一条doc开启查,查10条。(如果你不使用from、to搜索的话,默认就搜索前10条)


GET /your_index/your_type/_search
{
   "query": { "match_all": {} },
    "from": 0, # 0:是第一个doc
    "size": 10
}   
# 还可以像这样发起分页请求
GET /your_index/your_type/_search?size=10
GET /your_index/your_type/_search?size=10&from=20
# deep paging 问题
比如系统中只有3个primary shard,1个replica shard,共有6W条数据。
用户希望查询第1000页,每页10条数据。也就是1000*10 = 10001 ~ 10010 条数据
假如说用户将这个分页请求会打向ES集群中的replica shard,接下来会发生什么?
回答:
接收到请求的shard 我们称它为coordinate node(协调节点),它会将请求转发到三个primary,
每个primary shard都会取出它们的第1~10010条数据id,返回给coordinate node,
也就是说coordinate node总共会接收到30030个id,然后coordinate node再拿着这些id发起mget请求获取数据
对获取到的结果30030排序处理,最后取相关性得分最高的10条返回给用户。
所以当分页过深的时候是非常消耗内存、网络带宽、CPU的。


30、指定要查询出来的doc的某几个字段。如下:


# 假设白日梦对应的json长下面这样:
{
  "name":"白日梦",
  “address”:"beijing",
  "gender":"man"
}
# 然后我只想检索出name字段,其他的不想知道,可以像下面这样通过_sorce限制
GET /your_index/your_type/_search
{
   "query": { "match_all": {} },
   # ES会返回全文JSON,通过_source可以指定返回的字段
   "_source": ["name"],
}


31、filter过滤,查询name中包含白日梦,且star大于100的doc。


GET /your_index/your_type/_search
{
   "query": { 
     # 可以使用bool封装包括多个查询条件
     “bool":{
        "must":{"match": {"name":"白日 梦"}}
        # 指定按照star的范围进行filter
        "filter":{
            # range既能放在query中,也能放在filter中。
            # 如果放在filter中,range过滤的动作不会影响最终的得分。
            # 但是放在query中,range动作会影响最终的得分。
            "range":{
              “star”:{"gt":100}
             }
         }
      }
   }
}  
# 拓展:
# 关于range还可以像这样过滤时间
"range":{
  # 指定birthday范围为最近一个月的doc
  "birthday":{
    "gt":"2021-01-20||-30d"
  }
}
# 或者使用now语法
  # 指定birthday范围为最近一个月的doc
  "birthday":{
    "gt":"now-30d"
  }
}


32、指定对返回的doc中指定字段中的指定单词高亮显示。


GET /your_index/your_type/_search
{
   "query": { 
      "match": {"name":"白日 梦"}  
    },
    "highlight":{ # 高亮显示
       "fields":{  # 指定高亮的字段为 firstname
         "firstname":{}
     }
} 
# 最终得到的返回值类似下面这样
  ... 
  "hits" : {
    "total" : 1000,# 1000个
    "max_score" : null,
    "hits" : [ {   
      "_index" : "bank",
      "_type" : "_doc",
      "_id" : "0",
      "sort": [0],
      "_score" : 0.777777,
      "_source" :     {"account_number":0,
                       "balance":16623,
                       "firstname":"我是白",
                       "lastname":"日梦",
                       "state":"CO"}
      }],
      "highlight":{
       "firstname":[
         "我是<em>白</em>"
       ]
 }
 ...


参考:https://www.elastic.co/guide/en/elasticsearch/reference/6.2/query-dsl.html

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
3月前
|
数据可视化 Java Windows
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
本文介绍了如何在Windows环境下安装Elasticsearch(ES)、Elasticsearch Head可视化插件和Kibana,以及如何配置ES的跨域问题,确保Kibana能够连接到ES集群,并提供了安装过程中可能遇到的问题及其解决方案。
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
|
2月前
|
存储 JSON 监控
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
52 4
|
2月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
147 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
2月前
|
自然语言处理 搜索推荐 Java
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(一)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图
52 0
|
2月前
|
存储 自然语言处理 搜索推荐
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
SpringBoot 搜索引擎 海量数据 Elasticsearch-7 es上手指南 毫秒级查询 包括 版本选型、操作内容、结果截图(二)
35 0
|
3月前
|
JSON 自然语言处理 算法
ElasticSearch基础2——DSL查询文档,黑马旅游项目查询功能
DSL查询文档、RestClient查询文档、全文检索查询、精准查询、复合查询、地理坐标查询、分页、排序、高亮、黑马旅游案例
ElasticSearch基础2——DSL查询文档,黑马旅游项目查询功能
|
19天前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
34 5
|
3月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
4月前
|
数据可视化 Docker 容器
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】
这篇文章提供了通过Docker安装Elasticsearch和Kibana的详细过程和图解,包括下载镜像、创建和启动容器、处理可能遇到的启动失败情况(如权限不足和配置文件错误)、测试Elasticsearch和Kibana的连接,以及解决空间不足的问题。文章还特别指出了配置文件中空格的重要性以及环境变量中字母大小写的问题。
一文教会你如何通过Docker安装elasticsearch和kibana 【详细过程+图解】
|
4月前
|
JSON 自然语言处理 数据库
Elasticsearch从入门到项目部署 安装 分词器 索引库操作
这篇文章详细介绍了Elasticsearch的基本概念、倒排索引原理、安装部署、IK分词器的使用,以及如何在Elasticsearch中进行索引库的CRUD操作,旨在帮助读者从入门到项目部署全面掌握Elasticsearch的使用。