数据仓库心得(12)数据治理之数仓数据管理实践

简介: 数据治理之数仓数据管理实践心得

这边文章聊聊自己对数据治理开发实践的一些思路,就是聊聊怎么开始去做数据治理这件事情。说起数据治理,有时候虽然看了很多文章,看了很多的介绍,了解数据治理的理论,但是实际上需要我们去搞的时候,就会踩很多的坑。这里记一下自己做数据治理的一些思路,做做笔记,也分享给需要的同学。

当然,想要做数据治理,想要学习了解,一下数据治理的范围,理论等,最好可以看看别人怎么做的,了解数据治理可以参考:数据仓库(11)什么是大数据治理,数据治理的范围是哪些。

那接下来就继续说说数据治理的一些思路心得。

接到数据治理的任务?要怎么做?

梳理目前数据集群,以及业务的总体情况
这个,其实没有什么好说,做事情之前,肯定是要先了解,我们要做的东西是怎么样的,评估可能会遇到的问题,这样才能进一步做出来好的数据质量方案。

对数据治理进行分类
了解了我们面对的数据集群之后,就要了解对我们需要治理的方向,进行分类了,这个对我们后续的方案设计和组件的选取、改造会有很大的影响,不一样的分类,我们要解决问题的范围,是不一样的。

那要怎么分类?首先是大的方向。

主数据管理
元数据管理
数据标准
数据质量管理
数据安全管理
数据计算管理
数据存储管理
大的方向确定了,当其实还是太大了,还是需要进一步的进行切割。

像是数据质量管理,可以进一步切分为

1 唯一性校验:不存在无意义的重复数据
2 完整性校验:数据完整且连续
3 一致性校验:数据在多数据源中意义一致
4 有效性校验:这里主要指数据在分析的时间点是有效,而非过期或失效数据
5 准确性校验:数据合理、准确,并符合数据类型的标准

元数据管理,要划分为技术元数据和业务元数据等,具体的划分粒度,应该需要到具体的,可实现的,不容易混淆,以及偏于以后数据的管理和使用。毕竟这个东西后续要给开发,给数据bi等人使用的。当然,我们可能不能已下载就划分好一个最好的分类,我们应该循环迭代,做出一个更加符合实际出来。

数据管理这个,如果说技术能力,开发人力有限,那其实往往更加简单的方式更好,也便于推广,应该说一个可用的方案好过于一个全面,但用起来不方便的方案。

针对某个类别的数据,进行具体设计,开发,并进一步成规范
上面,我们已经大概梳理好了我们数据治理的范围和分类,进一步的,我们就需要落地了。这个时候,我们就要进一步的针对,我们的划分的问题,提出,我们的方案,并实现他。

如果,上面说的数据质量管理中的准确性校验,这个时候,我们就面临了一个问题,怎么样的数据,符合数据合理、准确,并符合数据类型的标准这样的数据规范?我们会怎么去验证这个东西呢?正常情况下,开发人员是怎么去验证这个东西的?

所以,这个时候,我们就需要抽象出这些具体的操作,拼通过合适的方案实现他。

如果,准确性校验,开发人员一般是通过写sql,通过一定的数据规则判断的,比如数据的波动,数据值的范围等。那么我们做这个的时候,是不是就可以做这样的一个系统,可以配置sql,或者一些比较通过的逻辑,定时比对数据,得到我们的一个结果,实现这样的一个功能?当然这个肯定不是最好的方案,但是一个可用的方案好过于一个全面,但用起来不方便的方案。然后不停的迭代优化,完善。

当然,这个时候也要放过来思考我们上面的划分是不是,合理,比如数据质量管理,是不是可以使用同一个思路去做?争取事半功倍。

执行规范
做好上面的事情,接下来,就是考验执行了的时候了,任何方案在,最终如果不能很好的执行,那就是事倍功半。

啰里啰唆,写了这一点点心得,逻辑可能不是很通畅,希望可以给到各个在数据治理挣扎的同学,一点思路,这个也是我的个人笔记,后续有新的想法,再更新。

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
7月前
|
运维 算法 机器人
阿里云AnalyticDB具身智能方案:破解机器人仿真数据、算力与运维之困
本文将介绍阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL推出的全托管云上仿真解决方案,方案采用云原生架构,为开发者提供从开发环境、仿真计算到数据管理的全链路支持。
|
7月前
|
SQL 分布式计算 DataWorks
破界·融合·进化:解码DataWorks与Hologres的湖仓一体实践
基于阿里云DataWorks与实时数仓Hologres,提供统一的大数据开发治理平台与全链路实时分析能力。DataWorks支持多行业数据集成与管理,Hologres实现海量数据的实时写入与高性能查询分析,二者深度融合,助力企业构建高效、实时的数据驱动决策体系,加速数字化升级。
|
10月前
|
存储 监控 数据挖掘
京东物流基于Flink & StarRocks的湖仓建设实践
本文整理自京东物流高级数据开发工程师梁宝彬在Flink Forward Asia 2024的分享,聚焦实时湖仓的探索与建设、应用实践、问题思考及未来展望。内容涵盖京东物流通过Flink和Paimon等技术构建实时湖仓体系的过程,解决复杂业务场景下的数据分析挑战,如多维OLAP分析、大屏监控等。同时,文章详细介绍了基于StarRocks的湖仓一体方案,优化存储成本并提升查询效率,以及存算分离的应用实践。最后,对未来数据服务的发展方向进行了展望,计划推广长周期数据存储服务和原生数据湖建设,进一步提升数据分析能力。
947 1
京东物流基于Flink & StarRocks的湖仓建设实践
|
10月前
|
存储 SQL 运维
中国联通网络资源湖仓一体应用实践
本文分享了中国联通技术专家李晓昱在Flink Forward Asia 2024上的演讲,介绍如何借助Flink+Paimon湖仓一体架构解决传统数仓处理百亿级数据的瓶颈。内容涵盖网络资源中心概况、现有挑战、新架构设计及实施效果。新方案实现了数据一致性100%,同步延迟从3小时降至3分钟,存储成本降低50%,为通信行业提供了高效的数据管理范例。未来将深化流式数仓与智能运维融合,推动数字化升级。
501 0
中国联通网络资源湖仓一体应用实践
|
10月前
|
存储 消息中间件 分布式计算
Hologres实时数仓在B站游戏的建设与实践
本文介绍了B站游戏业务中实时数据仓库的构建与优化过程。为满足日益增长的数据实时性需求,采用了Hologres作为核心组件优化传统Lambda架构,实现了存储层面的流批一体化及离线-实时数据的无缝衔接。文章详细描述了架构选型、分层设计(ODS、DWD、DIM、ADS)及关键技术挑战的解决方法,如高QPS点查、数据乱序重写等。目前,该实时数仓已广泛应用于运营分析、广告投放等多个场景,并计划进一步完善实时指标体系、扩展明细层应用及研发数据实时解析能力。
Hologres实时数仓在B站游戏的建设与实践
|
11月前
|
存储 分布式计算 MaxCompute
Hologres实时湖仓能力入门实践
本文由武润雪(栩染)撰写,介绍Hologres 3.0版本作为一体化实时湖仓平台的升级特性。其核心能力包括湖仓存储一体、多模式计算一体、分析服务一体及Data+AI一体,极大提升数据开发效率。文章详细解析了两种湖仓架构:MaxCompute + Hologres实现离线实时一体化,以及Hologres + DLF + OSS构建开放湖仓架构,并深入探讨元数据抽象、权限互通等重点功能,同时提供具体使用说明与Demo演示。
|
6月前
|
SQL 存储 运维
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
本文介绍了 Apache Doris 在菜鸟的大规模落地的实践经验,菜鸟为什么选择 Doris,以及 Doris 如何在菜鸟从 0 开始,一步步的验证、落地,到如今上万核的规模,服务于各个业务线,Doris 已然成为菜鸟 OLAP 数据分析的最优选型。
421 2
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
|
10月前
|
存储 消息中间件 Java
抖音集团电商流量实时数仓建设实践
本文基于抖音集团电商数据工程师姚遥在Flink Forward Asia 2024的分享,围绕电商流量数据处理展开。内容涵盖业务挑战、电商流量建模架构、流批一体实践、大流量任务调优及总结展望五个部分。通过数据建模与优化,实现效率、质量、成本和稳定性全面提升,数据质量达99%以上,任务性能提升70%。未来将聚焦自动化、低代码化与成本优化,探索更高效的流批一体化方案。
646 12
抖音集团电商流量实时数仓建设实践

热门文章

最新文章