前提
前一篇文章通过Redis
的有序集合Sorted Set
和调度框架Quartz
实例一版简单的延时任务,但是有两个相对重要的问题没有解决:
- 分片。
- 监控。
这篇文章的内容就是要完善这两个方面的功能。前置文章:使用Redis实现延时任务(一)。
为什么需要分片
这里重新贴一下查询脚本dequeue.lua
的内容:
-- 参考jesque的部分Lua脚本实现 local zset_key = KEYS[1] local hash_key = KEYS[2] local min_score = ARGV[1] local max_score = ARGV[2] local offset = ARGV[3] local limit = ARGV[4] -- TYPE命令的返回结果是{'ok':'zset'}这样子,这里利用next做一轮迭代 local status, type = next(redis.call('TYPE', zset_key)) if status ~= nil and status == 'ok' then if type == 'zset' then local list = redis.call('ZREVRANGEBYSCORE', zset_key, max_score, min_score, 'LIMIT', offset, limit) if list ~= nil and #list > 0 then -- unpack函数能把table转化为可变参数 redis.call('ZREM', zset_key, unpack(list)) local result = redis.call('HMGET', hash_key, unpack(list)) redis.call('HDEL', hash_key, unpack(list)) return result end end end return nil 复制代码
这个脚本一共用到了四个命令ZREVRANGEBYSCORE
、ZREM
、HMGET
和HDEL
(TYPE
命令的时间复杂度可以忽略):
命令 | 时间复杂度 | 参数说明 |
ZREVRANGEBYSCORE |
O(log(N)+M) |
N 是有序集合中的元素总数,M 是返回的元素的数量 |
ZREM |
O(M*log(N)) |
N 是有序集合中的元素总数,M 是成功移除的元素的数量 |
HMGET |
O(L) |
L 是成功返回的域的数量 |
HDEL |
O(L) |
L 是要删除的域的数量 |
接下来需要结合场景和具体参数分析,假如在生产环境,有序集合的元素总量维持在10000每小时(也就是说业务量是每小时下单1万笔),由于查询Sorted Set
和Hash
的数据同时做了删除,那么30分钟内常驻在这两个集合中的数据有5000条,也就是上面表中的N = 5000
。假设我们初步定义查询的LIMIT
值为100,也就是上面的M
值为100,假设Redis
中每个操作单元的耗时简单认为是T
,那么分析一下5000条数据处理的耗时:
序号 | 集合基数 | ZREVRANGEBYSCORE |
ZREM |
HMGET |
HDEL |
1 | 5000 |
log(5000T) + 100T |
log(5000T) * 100 |
100T |
100T |
2 | 4900 |
log(4900T) + 100T |
log(4900T) * 100 |
100T |
100T |
3 | 4800 |
log(4800T) + 100T |
log(4800T) * 100 |
100T |
100T |
... | ... | ... | ... | ... | ... |
理论上,脚本用到的四个命令中,ZREM
命令的耗时是最大的,而ZREVRANGEBYSCORE
和ZREM
的时间复杂度函数都是M * log(N)
,因此控制集合元素基数N
对于降低Lua
脚本运行的耗时是有一定帮助的。
分片
上面分析了dequeue.lua
的时间复杂度,准备好的分片方案有两个:
- 方案一:单
Redis
实例,对Sorted Set
和Hash
两个集合的数据进行分片。 - 方案二:基于多个
Redis
实例(可以是哨兵或者集群),实施方案一的分片操作。
为了简单起见,后面的例子中分片的数量(shardingCount
)设计为2,生产中分片数量应该根据实际情况定制。预设使用长整型的用户ID字段userId
取模进行分片,假定测试数据中的userId
是均匀分布的。
通用实体:
@Data public class OrderMessage { private String orderId; private BigDecimal amount; private Long userId; private String timestamp; } 复制代码
延迟队列接口:
public interface OrderDelayQueue { void enqueue(OrderMessage message); List<OrderMessage> dequeue(String min, String max, String offset, String limit, int index); List<OrderMessage> dequeue(int index); String enqueueSha(); String dequeueSha(); } 复制代码
单Redis实例分片
单Redis
实例分片比较简单,示意图如下:
编写队列实现代码如下(部分参数写死,仅供参考,切勿照搬到生产中):
@RequiredArgsConstructor @Component public class RedisOrderDelayQueue implements OrderDelayQueue, InitializingBean { private static final String MIN_SCORE = "0"; private static final String OFFSET = "0"; private static final String LIMIT = "10"; /** * 分片数量 */ private static final long SHARDING_COUNT = 2L; private static final String ORDER_QUEUE_PREFIX = "ORDER_QUEUE_"; private static final String ORDER_DETAIL_QUEUE_PREFIX = "ORDER_DETAIL_QUEUE_"; private static final String ENQUEUE_LUA_SCRIPT_LOCATION = "/lua/enqueue.lua"; private static final String DEQUEUE_LUA_SCRIPT_LOCATION = "/lua/dequeue.lua"; private static final AtomicReference<String> ENQUEUE_LUA_SHA = new AtomicReference<>(); private static final AtomicReference<String> DEQUEUE_LUA_SHA = new AtomicReference<>(); private final JedisProvider jedisProvider; @Override public void enqueue(OrderMessage message) { List<String> args = Lists.newArrayList(); args.add(message.getOrderId()); args.add(String.valueOf(System.currentTimeMillis())); args.add(message.getOrderId()); args.add(JSON.toJSONString(message)); List<String> keys = Lists.newArrayList(); long index = message.getUserId() % SHARDING_COUNT; keys.add(ORDER_QUEUE_PREFIX + index); keys.add(ORDER_DETAIL_QUEUE_PREFIX + index); try (Jedis jedis = jedisProvider.provide()) { jedis.evalsha(ENQUEUE_LUA_SHA.get(), keys, args); } } @Override public List<OrderMessage> dequeue(int index) { // 30分钟之前 String maxScore = String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000); return dequeue(MIN_SCORE, maxScore, OFFSET, LIMIT, index); } @SuppressWarnings("unchecked") @Override public List<OrderMessage> dequeue(String min, String max, String offset, String limit, int index) { List<String> args = new ArrayList<>(); args.add(min); args.add(max); args.add(offset); args.add(limit); List<OrderMessage> result = Lists.newArrayList(); List<String> keys = Lists.newArrayList(); keys.add(ORDER_QUEUE_PREFIX + index); keys.add(ORDER_DETAIL_QUEUE_PREFIX + index); try (Jedis jedis = jedisProvider.provide()) { List<String> eval = (List<String>) jedis.evalsha(DEQUEUE_LUA_SHA.get(), keys, args); if (null != eval) { for (String e : eval) { result.add(JSON.parseObject(e, OrderMessage.class)); } } } return result; } @Override public String enqueueSha() { return ENQUEUE_LUA_SHA.get(); } @Override public String dequeueSha() { return DEQUEUE_LUA_SHA.get(); } @Override public void afterPropertiesSet() throws Exception { // 加载Lua脚本 loadLuaScript(); } private void loadLuaScript() throws Exception { try (Jedis jedis = jedisProvider.provide()) { ClassPathResource resource = new ClassPathResource(ENQUEUE_LUA_SCRIPT_LOCATION); String luaContent = StreamUtils.copyToString(resource.getInputStream(), StandardCharsets.UTF_8); String sha = jedis.scriptLoad(luaContent); ENQUEUE_LUA_SHA.compareAndSet(null, sha); resource = new ClassPathResource(DEQUEUE_LUA_SCRIPT_LOCATION); luaContent = StreamUtils.copyToString(resource.getInputStream(), StandardCharsets.UTF_8); sha = jedis.scriptLoad(luaContent); DEQUEUE_LUA_SHA.compareAndSet(null, sha); } } } 复制代码
消费者定时任务的实现如下:
DisallowConcurrentExecution @Component public class OrderMessageConsumer implements Job { private static final Logger LOGGER = LoggerFactory.getLogger(OrderMessageConsumer.class); private static final AtomicInteger COUNTER = new AtomicInteger(); /** * 初始化业务线程池 */ private static final ExecutorService BUSINESS_WORKER_POOL = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors(), r -> { Thread thread = new Thread(r); thread.setDaemon(true); thread.setName("OrderMessageConsumerWorker-" + COUNTER.getAndIncrement()); return thread; }); @Autowired private OrderDelayQueue orderDelayQueue; @Override public void execute(JobExecutionContext context) throws JobExecutionException { // 这里为了简单起见,分片的下标暂时使用Quartz的任务执行上下文存放 int shardingIndex = context.getMergedJobDataMap().getInt("shardingIndex"); LOGGER.info("订单消息消费者定时任务开始执行,shardingIndex:[{}]...", shardingIndex); List<OrderMessage> dequeue = orderDelayQueue.dequeue(shardingIndex); if (null != dequeue) { final CountDownLatch latch = new CountDownLatch(1); BUSINESS_WORKER_POOL.execute(new ConsumeTask(latch, dequeue, shardingIndex)); try { latch.await(); } catch (InterruptedException ignore) { //ignore } } LOGGER.info("订单消息消费者定时任务执行完毕,shardingIndex:[{}]...", shardingIndex); } @RequiredArgsConstructor private static class ConsumeTask implements Runnable { private final CountDownLatch latch; private final List<OrderMessage> messages; private final int shardingIndex; @Override public void run() { try { for (OrderMessage message : messages) { LOGGER.info("shardingIndex:[{}],处理订单消息,内容:{}", shardingIndex, JSON.toJSONString(message)); // 模拟耗时 TimeUnit.MILLISECONDS.sleep(50); } } catch (Exception ignore) { } finally { latch.countDown(); } } } } 复制代码
启动定时任务和写入测试数据的CommandLineRunner
实现如下:
@Component public class QuartzJobStartCommandLineRunner implements CommandLineRunner { @Autowired private Scheduler scheduler; @Autowired private JedisProvider jedisProvider; @Override public void run(String... args) throws Exception { int shardingCount = 2; // 准备测试数据 prepareOrderMessageData(shardingCount); for (ConsumerTask task : prepareConsumerTasks(shardingCount)) { scheduler.scheduleJob(task.getJobDetail(), task.getTrigger()); } } private void prepareOrderMessageData(int shardingCount) throws Exception { DateTimeFormatter f = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS"); try (Jedis jedis = jedisProvider.provide()) { List<OrderMessage> messages = Lists.newArrayList(); for (int i = 0; i < 100; i++) { OrderMessage message = new OrderMessage(); message.setAmount(BigDecimal.valueOf(i)); message.setOrderId("ORDER_ID_" + i); message.setUserId((long) i); message.setTimestamp(LocalDateTime.now().format(f)); messages.add(message); } for (OrderMessage message : messages) { // 30分钟前 Double score = Double.valueOf(String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000)); long index = message.getUserId() % shardingCount; jedis.hset("ORDER_DETAIL_QUEUE_" + index, message.getOrderId(), JSON.toJSONString(message)); jedis.zadd("ORDER_QUEUE_" + index, score, message.getOrderId()); } } } private List<ConsumerTask> prepareConsumerTasks(int shardingCount) { List<ConsumerTask> tasks = Lists.newArrayList(); for (int i = 0; i < shardingCount; i++) { JobDetail jobDetail = JobBuilder.newJob(OrderMessageConsumer.class) .withIdentity("OrderMessageConsumer-" + i, "DelayTask") .usingJobData("shardingIndex", i) .build(); Trigger trigger = TriggerBuilder.newTrigger() .withIdentity("OrderMessageConsumerTrigger-" + i, "DelayTask") .withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(10).repeatForever()) .build(); tasks.add(new ConsumerTask(jobDetail, trigger)); } return tasks; } @Getter @RequiredArgsConstructor private static class ConsumerTask { private final JobDetail jobDetail; private final Trigger trigger; } } 复制代码
启动应用,输出如下:
2019-08-28 00:13:20.648 INFO 50248 --- [ main] c.t.s.s.NoneJdbcSpringApplication : Started NoneJdbcSpringApplication in 1.35 seconds (JVM running for 5.109) 2019-08-28 00:13:20.780 INFO 50248 --- [ryBean_Worker-1] c.t.s.sharding.OrderMessageConsumer : 订单消息消费者定时任务开始执行,shardingIndex:[0]... 2019-08-28 00:13:20.781 INFO 50248 --- [ryBean_Worker-2] c.t.s.sharding.OrderMessageConsumer : 订单消息消费者定时任务开始执行,shardingIndex:[1]... 2019-08-28 00:13:20.788 INFO 50248 --- [onsumerWorker-1] c.t.s.sharding.OrderMessageConsumer : shardingIndex:[1],处理订单消息,内容:{"amount":99,"orderId":"ORDER_ID_99","timestamp":"2019-08-28 00:13:20.657","userId":99} 2019-08-28 00:13:20.788 INFO 50248 --- [onsumerWorker-0] c.t.s.sharding.OrderMessageConsumer : shardingIndex:[0],处理订单消息,内容:{"amount":98,"orderId":"ORDER_ID_98","timestamp":"2019-08-28 00:13:20.657","userId":98} 2019-08-28 00:13:20.840 INFO 50248 --- [onsumerWorker-1] c.t.s.sharding.OrderMessageConsumer : shardingIndex:[1],处理订单消息,内容:{"amount":97,"orderId":"ORDER_ID_97","timestamp":"2019-08-28 00:13:20.657","userId":97} 2019-08-28 00:13:20.840 INFO 50248 --- [onsumerWorker-0] c.t.s.sharding.OrderMessageConsumer : shardingIndex:[0],处理订单消息,内容:{"amount":96,"orderId":"ORDER_ID_96","timestamp":"2019-08-28 00:13:20.657","userId":96} // ... 省略大量输出 2019-08-28 00:13:21.298 INFO 50248 --- [ryBean_Worker-1] c.t.s.sharding.OrderMessageConsumer : 订单消息消费者定时任务执行完毕,shardingIndex:[0]... 2019-08-28 00:13:21.298 INFO 50248 --- [ryBean_Worker-2] c.t.s.sharding.OrderMessageConsumer : 订单消息消费者定时任务执行完毕,shardingIndex:[1]... // ... 省略大量输出 复制代码
多Redis实例分片
单Redis
实例分片其实存在一个问题,就是Redis
实例总是单线程处理客户端的命令,即使客户端是多个线程执行Redis
命令,示意图如下:
这种情况下,虽然通过分片降低了Lua
脚本命令的复杂度,但是Redis
的命令处理模型(单线程)也有可能成为另一个性能瓶颈隐患。因此,可以考虑基于多Redis
实例进行分片。
这里为了简单起见,用两个单点的Redis
实例做编码示例。代码如下:
// Jedis提供者 @Component public class JedisProvider implements InitializingBean { private final Map<Long, JedisPool> pools = Maps.newConcurrentMap(); private JedisPool defaultPool; @Override public void afterPropertiesSet() throws Exception { JedisPool pool = new JedisPool("localhost"); defaultPool = pool; pools.put(0L, pool); // 这个是虚拟机上的redis实例 pool = new JedisPool("192.168.56.200"); pools.put(1L, pool); } public Jedis provide(Long index) { return pools.getOrDefault(index, defaultPool).getResource(); } } // 订单消息 @Data public class OrderMessage { private String orderId; private BigDecimal amount; private Long userId; } // 订单延时队列接口 public interface OrderDelayQueue { void enqueue(OrderMessage message); List<OrderMessage> dequeue(String min, String max, String offset, String limit, long index); List<OrderMessage> dequeue(long index); String enqueueSha(long index); String dequeueSha(long index); } // 延时队列实现 @RequiredArgsConstructor @Component public class RedisOrderDelayQueue implements OrderDelayQueue, InitializingBean { private static final String MIN_SCORE = "0"; private static final String OFFSET = "0"; private static final String LIMIT = "10"; private static final long SHARDING_COUNT = 2L; private static final String ORDER_QUEUE = "ORDER_QUEUE"; private static final String ORDER_DETAIL_QUEUE = "ORDER_DETAIL_QUEUE"; private static final String ENQUEUE_LUA_SCRIPT_LOCATION = "/lua/enqueue.lua"; private static final String DEQUEUE_LUA_SCRIPT_LOCATION = "/lua/dequeue.lua"; private static final ConcurrentMap<Long, String> ENQUEUE_LUA_SHA = Maps.newConcurrentMap(); private static final ConcurrentMap<Long, String> DEQUEUE_LUA_SHA = Maps.newConcurrentMap(); private final JedisProvider jedisProvider; @Override public void enqueue(OrderMessage message) { List<String> args = Lists.newArrayList(); args.add(message.getOrderId()); args.add(String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000)); args.add(message.getOrderId()); args.add(JSON.toJSONString(message)); List<String> keys = Lists.newArrayList(); long index = message.getUserId() % SHARDING_COUNT; keys.add(ORDER_QUEUE); keys.add(ORDER_DETAIL_QUEUE); try (Jedis jedis = jedisProvider.provide(index)) { jedis.evalsha(ENQUEUE_LUA_SHA.get(index), keys, args); } } @Override public List<OrderMessage> dequeue(long index) { // 30分钟之前 String maxScore = String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000); return dequeue(MIN_SCORE, maxScore, OFFSET, LIMIT, index); } @SuppressWarnings("unchecked") @Override public List<OrderMessage> dequeue(String min, String max, String offset, String limit, long index) { List<String> args = new ArrayList<>(); args.add(min); args.add(max); args.add(offset); args.add(limit); List<OrderMessage> result = Lists.newArrayList(); List<String> keys = Lists.newArrayList(); keys.add(ORDER_QUEUE); keys.add(ORDER_DETAIL_QUEUE); try (Jedis jedis = jedisProvider.provide(index)) { List<String> eval = (List<String>) jedis.evalsha(DEQUEUE_LUA_SHA.get(index), keys, args); if (null != eval) { for (String e : eval) { result.add(JSON.parseObject(e, OrderMessage.class)); } } } return result; } @Override public String enqueueSha(long index) { return ENQUEUE_LUA_SHA.get(index); } @Override public String dequeueSha(long index) { return DEQUEUE_LUA_SHA.get(index); } @Override public void afterPropertiesSet() throws Exception { // 加载Lua脚本 loadLuaScript(); } private void loadLuaScript() throws Exception { for (long i = 0; i < SHARDING_COUNT; i++) { try (Jedis jedis = jedisProvider.provide(i)) { ClassPathResource resource = new ClassPathResource(ENQUEUE_LUA_SCRIPT_LOCATION); String luaContent = StreamUtils.copyToString(resource.getInputStream(), StandardCharsets.UTF_8); String sha = jedis.scriptLoad(luaContent); ENQUEUE_LUA_SHA.put(i, sha); resource = new ClassPathResource(DEQUEUE_LUA_SCRIPT_LOCATION); luaContent = StreamUtils.copyToString(resource.getInputStream(), StandardCharsets.UTF_8); sha = jedis.scriptLoad(luaContent); DEQUEUE_LUA_SHA.put(i, sha); } } } } // 消费者 public class OrderMessageConsumer implements Job { private static final Logger LOGGER = LoggerFactory.getLogger(OrderMessageConsumer.class); private static final AtomicInteger COUNTER = new AtomicInteger(); // 初始化业务线程池 private final ExecutorService businessWorkerPool = Executors.newSingleThreadExecutor(r -> { Thread thread = new Thread(r); thread.setDaemon(true); thread.setName("OrderMessageConsumerWorker-" + COUNTER.getAndIncrement()); return thread; }); @Autowired private OrderDelayQueue orderDelayQueue; @Override public void execute(JobExecutionContext context) throws JobExecutionException { long shardingIndex = context.getMergedJobDataMap().getLong("shardingIndex"); LOGGER.info("订单消息消费者定时任务开始执行,shardingIndex:[{}]...", shardingIndex); List<OrderMessage> dequeue = orderDelayQueue.dequeue(shardingIndex); if (null != dequeue) { // 这里的倒数栅栏,在线程池资源充足的前提下可以去掉 final CountDownLatch latch = new CountDownLatch(1); businessWorkerPool.execute(new ConsumeTask(latch, dequeue, shardingIndex)); try { latch.await(); } catch (InterruptedException ignore) { //ignore } } LOGGER.info("订单消息消费者定时任务执行完毕,shardingIndex:[{}]...", shardingIndex); } @RequiredArgsConstructor private static class ConsumeTask implements Runnable { private final CountDownLatch latch; private final List<OrderMessage> messages; private final long shardingIndex; @Override public void run() { try { for (OrderMessage message : messages) { LOGGER.info("shardingIndex:[{}],处理订单消息,内容:{}", shardingIndex, JSON.toJSONString(message)); // 模拟处理耗时50毫秒 TimeUnit.MILLISECONDS.sleep(50); } } catch (Exception ignore) { } finally { latch.countDown(); } } } } // 配置 @Configuration public class QuartzConfiguration { @Bean public AutowiredSupportQuartzJobFactory autowiredSupportQuartzJobFactory() { return new AutowiredSupportQuartzJobFactory(); } @Bean public SchedulerFactoryBean schedulerFactoryBean(AutowiredSupportQuartzJobFactory autowiredSupportQuartzJobFactory) { SchedulerFactoryBean factory = new SchedulerFactoryBean(); factory.setSchedulerName("RamScheduler"); factory.setAutoStartup(true); factory.setJobFactory(autowiredSupportQuartzJobFactory); return factory; } public static class AutowiredSupportQuartzJobFactory extends AdaptableJobFactory implements BeanFactoryAware { private AutowireCapableBeanFactory autowireCapableBeanFactory; @Override public void setBeanFactory(BeanFactory beanFactory) throws BeansException { this.autowireCapableBeanFactory = (AutowireCapableBeanFactory) beanFactory; } @Override protected Object createJobInstance(@Nonnull TriggerFiredBundle bundle) throws Exception { Object jobInstance = super.createJobInstance(bundle); autowireCapableBeanFactory.autowireBean(jobInstance); return jobInstance; } } } // CommandLineRunner @Component public class QuartzJobStartCommandLineRunner implements CommandLineRunner { @Autowired private Scheduler scheduler; @Autowired private JedisProvider jedisProvider; @Override public void run(String... args) throws Exception { long shardingCount = 2; prepareData(shardingCount); for (ConsumerTask task : prepareConsumerTasks(shardingCount)) { scheduler.scheduleJob(task.getJobDetail(), task.getTrigger()); } } private void prepareData(long shardingCount) { for (long i = 0L; i < shardingCount; i++) { Map<String, Double> z = Maps.newHashMap(); Map<String, String> h = Maps.newHashMap(); for (int k = 0; k < 100; k++) { OrderMessage message = new OrderMessage(); message.setAmount(BigDecimal.valueOf(k)); message.setUserId((long) k); message.setOrderId("ORDER_ID_" + k); // 30 min ago z.put(message.getOrderId(), Double.valueOf(String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000))); h.put(message.getOrderId(), JSON.toJSONString(message)); } Jedis jedis = jedisProvider.provide(i); jedis.hmset("ORDER_DETAIL_QUEUE", h); jedis.zadd("ORDER_QUEUE", z); } } private List<ConsumerTask> prepareConsumerTasks(long shardingCount) { List<ConsumerTask> tasks = Lists.newArrayList(); for (long i = 0; i < shardingCount; i++) { JobDetail jobDetail = JobBuilder.newJob(OrderMessageConsumer.class) .withIdentity("OrderMessageConsumer-" + i, "DelayTask") .usingJobData("shardingIndex", i) .build(); Trigger trigger = TriggerBuilder.newTrigger() .withIdentity("OrderMessageConsumerTrigger-" + i, "DelayTask") .withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(10).repeatForever()) .build(); tasks.add(new ConsumerTask(jobDetail, trigger)); } return tasks; } @Getter @RequiredArgsConstructor private static class ConsumerTask { private final JobDetail jobDetail; private final Trigger trigger; } } 复制代码
新增一个启动函数并且启动,控制台输出如下:
// ...省略大量输出 2019-09-01 14:08:27.664 INFO 13056 --- [ main] c.t.multi.NoneJdbcSpringApplication : Started NoneJdbcSpringApplication in 1.333 seconds (JVM running for 5.352) 2019-09-01 14:08:27.724 INFO 13056 --- [eduler_Worker-2] c.throwable.multi.OrderMessageConsumer : 订单消息消费者定时任务开始执行,shardingIndex:[1]... 2019-09-01 14:08:27.724 INFO 13056 --- [eduler_Worker-1] c.throwable.multi.OrderMessageConsumer : 订单消息消费者定时任务开始执行,shardingIndex:[0]... 2019-09-01 14:08:27.732 INFO 13056 --- [onsumerWorker-1] c.throwable.multi.OrderMessageConsumer : shardingIndex:[1],处理订单消息,内容:{"amount":99,"orderId":"ORDER_ID_99","userId":99} 2019-09-01 14:08:27.732 INFO 13056 --- [onsumerWorker-0] c.throwable.multi.OrderMessageConsumer : shardingIndex:[0],处理订单消息,内容:{"amount":99,"orderId":"ORDER_ID_99","userId":99} 2019-09-01 14:08:27.782 INFO 13056 --- [onsumerWorker-0] c.throwable.multi.OrderMessageConsumer : shardingIndex:[0],处理订单消息,内容:{"amount":98,"orderId":"ORDER_ID_98","userId":98} 2019-09-01 14:08:27.782 INFO 13056 --- [onsumerWorker-1] c.throwable.multi.OrderMessageConsumer : shardingIndex:[1],处理订单消息,内容:{"amount":98,"orderId":"ORDER_ID_98","userId":98} // ...省略大量输出 2019-09-01 14:08:28.239 INFO 13056 --- [eduler_Worker-2] c.throwable.multi.OrderMessageConsumer : 订单消息消费者定时任务执行完毕,shardingIndex:[1]... 2019-09-01 14:08:28.240 INFO 13056 --- [eduler_Worker-1] c.throwable.multi.OrderMessageConsumer : 订单消息消费者定时任务执行完毕,shardingIndex:[0]... // ...省略大量输出 复制代码
生产中应该避免Redis
服务单点,一般常用哨兵配合树状主从的部署方式(参考《Redis开发与运维》),2套Redis
哨兵的部署示意图如下:
需要什么监控项
我们需要相对实时地知道Redis
中的延时队列集合有多少积压数据,每次出队的耗时大概是多少等等监控项参数,这样我们才能更好地知道延时队列模块是否正常运行、是否存在性能瓶颈等等。具体的监控项,需要按需定制,这里为了方便举例,只做两个监控项的监控:
- 有序集合
Sorted Set
中积压的元素数量。 - 每次调用
dequeue.lua
的耗时。
采用的是应用实时上报数据的方式,依赖于spring-boot-starter-actuator
、Prometheus
、Grafana
搭建的监控体系,如果并不熟悉这个体系可以看两篇前置文章:
监控
引入依赖:
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-prometheus</artifactId> <version>1.2.0</version> </dependency> 复制代码
这里选用Gauge
的Meter
进行监控数据收集,添加监控类OrderDelayQueueMonitor
:
// OrderDelayQueueMonitor @Component public class OrderDelayQueueMonitor implements InitializingBean { private static final long SHARDING_COUNT = 2L; private final ConcurrentMap<Long, AtomicLong> remain = Maps.newConcurrentMap(); private final ConcurrentMap<Long, AtomicLong> lua = Maps.newConcurrentMap(); private ScheduledExecutorService executor; @Autowired private JedisProvider jedisProvider; @Override public void afterPropertiesSet() throws Exception { executor = Executors.newSingleThreadScheduledExecutor(r -> { Thread thread = new Thread(r, "OrderDelayQueueMonitor"); thread.setDaemon(true); return thread; }); for (long i = 0L; i < SHARDING_COUNT; i++) { AtomicLong l = new AtomicLong(); Metrics.gauge("order.delay.queue.lua.cost", Collections.singleton(Tag.of("index", String.valueOf(i))), l, AtomicLong::get); lua.put(i, l); AtomicLong r = new AtomicLong(); Metrics.gauge("order.delay.queue.remain", Collections.singleton(Tag.of("index", String.valueOf(i))), r, AtomicLong::get); remain.put(i, r); } // 每五秒上报一次集合中的剩余数据 executor.scheduleWithFixedDelay(new MonitorTask(jedisProvider), 0, 5, TimeUnit.SECONDS); } public void recordRemain(Long index, long count) { remain.get(index).set(count); } public void recordLuaCost(Long index, long count) { lua.get(index).set(count); } @RequiredArgsConstructor private class MonitorTask implements Runnable { private final JedisProvider jedisProvider; @Override public void run() { for (long i = 0L; i < SHARDING_COUNT; i++) { try (Jedis jedis = jedisProvider.provide(i)) { recordRemain(i, jedis.zcount("ORDER_QUEUE", "-inf", "+inf")); } } } } } 复制代码
原来的RedisOrderDelayQueue#dequeue()
进行改造:
@RequiredArgsConstructor @Component public class RedisOrderDelayQueue implements OrderDelayQueue, InitializingBean { // ... 省略没有改动的代码 private final OrderDelayQueueMonitor orderDelayQueueMonitor; // ... 省略没有改动的代码 @Override public List<OrderMessage> dequeue(String min, String max, String offset, String limit, long index) { List<String> args = new ArrayList<>(); args.add(min); args.add(max); args.add(offset); args.add(limit); List<OrderMessage> result = Lists.newArrayList(); List<String> keys = Lists.newArrayList(); keys.add(ORDER_QUEUE); keys.add(ORDER_DETAIL_QUEUE); try (Jedis jedis = jedisProvider.provide(index)) { long start = System.nanoTime(); List<String> eval = (List<String>) jedis.evalsha(DEQUEUE_LUA_SHA.get(index), keys, args); long end = System.nanoTime(); // 添加dequeue的耗时监控-单位微秒 orderDelayQueueMonitor.recordLuaCost(index, TimeUnit.NANOSECONDS.toMicros(end - start)); if (null != eval) { for (String e : eval) { result.add(JSON.parseObject(e, OrderMessage.class)); } } } return result; } // ... 省略没有改动的代码 } 复制代码
其他配置这里简单说一下。
application.yaml
要开放prometheus
端点的访问权限:
server: port: 9091 management: endpoints: web: exposure: include: 'prometheus' 复制代码
Prometheus
服务配置尽量减少查询的间隔时间,暂定为5秒:
# my global config global: scrape_interval: 5s # Set the scrape interval to every 15 seconds. Default is every 1 minute. evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute. # scrape_timeout is set to the global default (10s). # Alertmanager configuration alerting: alertmanagers: - static_configs: - targets: # - alertmanager:9093 # Load rules once and periodically evaluate them according to the global 'evaluation_interval'. rule_files: # - "first_rules.yml" # - "second_rules.yml" # A scrape configuration containing exactly one endpoint to scrape: # Here it's Prometheus itself. scrape_configs: # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config. - job_name: 'prometheus' metrics_path: '/actuator/prometheus' # metrics_path defaults to '/metrics' # scheme defaults to 'http'. static_configs: - targets: ['localhost:9091'] 复制代码
Grafana
的基本配置项如下:
出队耗时 order_delay_queue_lua_cost 分片编号-{{index}} 订单延时队列积压量 order_delay_queue_remain 分片编号-{{index}} 复制代码
最终可以在Grafana
配置每5秒刷新,见效果如下:
这里的监控项更多时候应该按需定制,说实话,监控的工作往往是最复杂和繁琐的。
小结
全文相对详细地介绍了基于Redis
实现延时任务的分片和监控的具体实施过程,核心代码仅供参考,还有一些具体的细节例如Prometheus
、Grafana
的一些应用,这里限于篇幅不会详细地展开。说实话,基于实际场景做一次中间件和架构的选型并不是一件简单的事,而且往往初期的实施并不是最大的难点,更大的难题在后面的优化以及监控。
附件
Markdown
原件:github.com/zjcscut/blo…- Github Page:www.throwable.club/2019/09/01/…
- Coding Page:throwable.coding.me/2019/09/01/…