“炫技”还是“真硬核”,OpenPPL 实测阿里「倚天 710」芯片

简介: 本文将以「深度学习模型推理应用」为出发点,对「倚天 710」这款 ARM Server 芯片进行性能实测。

OpenPPL 自开源以来,便密切关注着业界的进展,致力于优化模型推理的全链条。完善对国产化芯片的支持,是 OpenPPL 团队的一个重点方向。


Github 地址:https://github.com/openppl-public


2021 年,阿里平头哥团队推出了全球首个 5nm 制程的 ARM Server 芯片 ——「倚天 710」。该芯片是基于 ARM 最新的 Neoverse N2 核心,自研的面向云数据中心服务器的高性能 CPU 芯片。


相比于市面上现有的 ARM Server 芯片,「倚天 710」在指令集、工艺、核心数、频率等多个指标上有着较为明显的优势:


鲲鹏 920 Amazon Graviton2 Altra 倚天 710
上市时间 2019 Q1 2019 Q4 2020 Q1 2021 Q4
指令集 ISA ARMv8.2 ARMv8.2 ARMv8.2 ARMv9
工艺 7nm 7nm 7nm 5nm
核心数 64 64 80 128
频率 最高 2.6GHz 2.5GHz 2.8GHz 最高 3.2GHz
接口 PCIe 4.0 PCIe 4.0 PCIe 4.0 PCIe 5.0
存储 DDR4 DDR4 DDR4 DDR5


前段时间,阿里云推出了基于该芯片的全新 ECS g8m 系列实例。OpenPPL 团队第一时间申请到了试用实例,对大家期待已久的「倚天 710」进行了性能实测。


此次评测将以「Amazon Graviton2」作为对比芯片,评测的内容包括:


  • 基础信息测试
  • 指令集支持情况
  • 核心算力测试
  • 访存系统测试
  • 软件性能实测
  • 通用矩阵乘实测性能
  • 深度学习模型实测性能

一、基础信息测试

  1. 指令集支持情况


自 ARMv8 以来,ARM 推出了多种高性能计算指令扩展,其中对机器学习领域最有帮助的有:

  • fp16: IEEE 754 标准 16-bit 浮点数指令集扩展
  • bf16: bfloat16 浮点数指令集扩展
  • i8mm: int8/uint8 矩阵指令集扩展
  • sve/sve2: 可变长向量指令集扩展
  • sme: 可变长矩阵指令集扩展


下表是「倚天 710」与「鲲鹏 920」「Amazon Graviton2」对这些指令集扩展支持情况的对比。可以看到,相比于竞品,「倚天 710」额外支持了多个高性能指令扩展:


指令集扩展 鲲鹏 920 Amazon Graviton2 倚天 710
fp16
bf16
i8mm
sve
sve2
sme


值得强调的是,bf16/i8mm 中的矩阵乘指令(bfmmla、smmla、ummla、usmmla)在「倚天 710」上得到了支持。

这些指令能够单条指令直接算出矩阵乘的结果,峰值算力较传统的向量指令有明显的提升:


指令集 指令 类型 乘加数 (单指令)
ARMv8 base fp32 fmla 向量 4
+ fp16 fp16 fmla 向量 8
+ bf16 bfmmla 矩阵 16
+ i8mm smmla/ummla/usmmla 矩阵 32

高性能微架构能够将这些矩阵指令的 IPC,保持在跟向量指令一样的水平上。因此,将向量指令更换成矩阵指令将大大提升计算的速度。这也是「倚天 710」选用最新 ARM Neoverse N2 内核所取得的后发优势。


2. CPU 核心算力峰值


这里我们对「倚天 710」和「Amazon Graviton2」的算力峰值进行了对比测试。

测试时,「Amazon Graviton2」的频率是 2.5GHz。「倚天 710」虽然最高频率可达 3.2GHz,但阿里云提供的试用实例频率被限制到了 2.75GHz


本文的所有数据都是在 2.75GHz 这个频率上测出的,没有真正挖掘出这款芯片的全部潜力。也非常期待阿里云后续正式发布的 ECS 能够提供解除频率限制的选项。


下表是我们实测的单核峰值性能:

数据精度 指令 「Amazon Graviton2」单核峰值算力 (2.5GHz) 「倚天 710」单核峰值算力 (2.75GHz)
fp32 fmla 39.95 GOPS 43.88 GOPS
fp16 fmla 79.90 GOPS 87.75 GOPS
bf16 bfmmla 不支持 175.51 GOPS
int8/uint8 smmla/ummla/usmmla 不支持 351.02 GOPS


由于「倚天 710」频率相比「Amazon Graviton2」提升了 10%,其 fp16/fp32 fmla 指令的算力比后者高 10%,这个结果符合预期。


但凭借着对新矩阵乘指令的支持,「倚天 710」的单核浮点算力最高可达 175.51 GOPS (BF16),单核定点算力最高可达 351.02 GOPS (INT8/UINT8)。这相对于「Amazon Graviton2」是一个巨大的提升。


另外值得强调的是,上述数据仅为单核心的算力。考虑到「倚天 710」的单颗芯片核心数是「Amazon Graviton2」的两倍(128 vs 64),因此芯片整体算力方面,倚天 710 要远高于 AWS Graviton2:


数据精度 指令 「Amazon Graviton2」单芯片估计算力 (2.5GHz x 64 cores) 「倚天 710」单芯片估计算力 (2.75GHz x 128 cores)
fp32 fmla 2.56 TOPS 5.62 TOPS
fp16 fmla 5.11 TOPS 11.23 TOPS
bf16 bfmmla 不支持 22.47 TOPS
int8/uint8 smmla/ummla/usmmla 不支持 44.93 TOPS

(上述数据为单核 x 核心数估算出来,非实测数据)


当然,考虑到阿里云尚未对该系列 ECS 定价,我们没法对两者单位成本算力进行一个准确的比较。期待阿里云尽快推出正式版的「倚天 710」实例。


我们在测峰值的同时,也对这些指令的延迟做了一下测试:


数据精度 指令 「Amazon Graviton2」指令延迟 「倚天 710」指令延迟
fp32 fmla 2 cycle 2 cycle
fp16 fmla 2 cycle 2 cycle
bf16 bfmmla 不支持 3 cycle
int8/uint8 smmla/ummla/usmmla 不支持 1 cycle

(上述延迟均为 Dst to Dst 延迟)


可以看到,fp16/fp32 fmla 指令延迟两者一致。 bfmmla 指令在算力大幅提升的情况下,延迟仅仅上升了 1 个 cycle。 而整型 mmla 指令的延迟仅有 1 cycle,非常利于优化。


3. 访存系统


「倚天 710」同「Amazon Graviton2」一样,有 64KB 的 L1 ICache、64KB 的 L1 DCache、1MB 的 L2 Cache,这些 Cache 都是每个核心独享的。下表是我们实测的读延迟与带宽:


访存层级 数据范围 「Amazon Graviton2」load 延迟 (cycle) 「倚天 710」load 延迟 (cycle)
L1 DCache 0 ~ 64KB 4 4
L2 Cache 64KB ~ 1MB 12 ~ 17 12 ~ 14


访存层级 数据范围 「Amazon Graviton2」带宽 (GB/s) 「倚天 710」load 带宽 (GB/s)
L1 DCache 0 ~ 64KB 73 90 ~ 100
L2 Cache 64KB ~ 1MB 33 ~ 44 50 ~ 54


可以看到,「倚天 710」的 L1 DCache 读带宽、L2 Cache 读延迟与带宽均明显优于「Amazon Graviton2」,这对于各类程序的性能会很有帮助。


另外,「倚天 710」的 unified L3 Cache 高达 128 MB,远高于「Amazon Graviton2」的 32 MB。这将大大提升倚天 710 在多核心协作下的性能。


但鉴于阿里云提供的试用 ECS 只有 4 个核心,因此本文并没有对 L3 Cache 及以下的访存系统进行测试。


二、软件性能实测

1. 通用矩阵乘性能实测


我们首先用通用矩阵乘 (GEMM) 来看下「倚天 710」在实际程序上的性能表现。

测试时,在「倚天 710」和「Amazon Graviton2」上使用相同的二进制文件,所用 ECS 操作系统也都保持相同 (Ubuntu 20.04)。


测试矩阵尺寸为 M x N x K = 1024 x 1152 x 1024,测试计算精度为 fp32、fp16、bf16 (输入输出格式为 fp16)。测试单核性能。


测试结果如下:


计算精度 「Amazon Graviton2」速度 「Amazon Graviton2」算力利用率 「倚天 710」速度 「倚天 710」算力利用率
fp32 36.64GOPS 91.59% 41.75GOPS 94.90%
fp16 74.39GOPS 92.99% 83.56GOPS 94.96%
bf16 不支持 不支持 165.11GOPS 93.81%

可以看到对于 GEMM 任务来说,「倚天 710」在相同计算精度上所能达到的实际计算速度要明显高于「Amazon Graviton2」。


而当使用了 bf16 矩阵乘指令后,「倚天 710」的 GEMM 实际计算速度超过了「Amazon Graviton2」fp16 的两倍。


如果进一步使用 i8mm 指令,算力差距将更加明显。当然随之而来的量化精度问题,需要在实际应用中进行调整与斟酌。

另外,「倚天 710」相对于「Amazon Graviton2」的性能提升不仅是因为主频高。同样的程序,在「倚天 710」上算力利用率会高 2 ~ 3 个百分点。简单优化的 GEMM 程序算力利用率就能达到 94 ~ 95% 左右,这使得「倚天 710」能够更好的发挥其硬件的性能。


2. 深度学习模型性能实测


最后,我们用一些经典的开源网络,来测试一下「倚天 710」在深度学习模型推理任务上的实际表现(测试时,推理框架使用我们自己的 OpenPPL)

OpenPPL 已于今年 1 月份支持了 ARM Server 架构,能够支持大部分 OpenMMLab、PyTorch Model Zoo 网络,并针对 ARM Server 架构的特点进行了针对性的优化。


测试时,我们保持「倚天 710」和「Amazon Graviton2」两者所使用的软件代码与模型文件相同,分别在两款芯片上进行了单核的性能测试,结果如下:

可以看到,无论是 FP16 还是 FP32 精度的推理,「倚天 710」在大部分模型上都能比「Amazon Graviton2」快 10% ~ 30%


相同计算精度下,这个提升幅度要高于上文的 GEMM。倚天 710 在更复杂的计算任务上,能够跟「Amazon Graviton2」拉开更明显的差距。


这些提升一部分来自于芯片本身主频的提升 (10%),另外一部分来自于访存系统容量、延迟与带宽的改善,以及微架构方面的改进 (分支预测、指令发射等)。这些改进实打实的加快了神经网络推理的速度。相信对于其他计算任务,「倚天 710」同样能取得不俗的成绩。


总结


通过测试我们可以看到,「倚天 710」相对于目前市面上的 ARM Server 芯片而言,在多个方面有着较为明显的优势:

  • 更高的主频、更高的核心数
  • 更新更全的指令集支持
  • 更高的峰值浮点、定点算力
  • 更好的访存系统性能


这些优势将使得「倚天 710」在实际计算任务上取得不俗的性能表现。


经我们实测,在通用矩阵乘和深度学习模型推理这两个计算任务上,「倚天 710」相比于「Amazon Graviton2」均能取得明显的性能提升。


这对于国产芯片而言是一个非常难能可贵的成绩。


后记

在与参与国产芯片研发的朋友们交流中,我们能深深感受到国产芯片自研的不易:除开或自研或采购的计算核心外,芯片时序功耗面积的收敛、硬件单元测试与功能测试、片上互联网络配置与调试、加工与封装,以及软件工具链的开发与优化,这些工作都需要投入大量的人力与时间,解决无数个问题才能不断完善。


因此「倚天 710」芯片是十分值得称赞的。


当然,我们仅仅对一小部分指标进行了测试,后续我们会对更多细节进行更深入的探索,也期待阿里云能够尽快开放正式版 ECS 实例,吸引更多用户使用,从不同应用、不同角度对这款芯片进行评价,足够的反馈可以帮助芯片厂商明确改进目标,给国产化芯片提供更多的支持。


我们也注意到,「倚天 710」支持了最新的 PCIe 5.0,在带宽、功耗等多个方面均优于 PCIe 4.0,能够更好地适配 GPU、NPU、FPGA 等各类异构加速外设。


我们期望看到,国产自研 CPU,搭配上国产自研的加速外设,跑上 OpenPPL 这样的全自研高性能推理引擎,国产商用高性能计算体系将日趋完善,为各类人工智能的应用提供更大价值。


OpenPPL 团队一直跟进着国产芯片的最新进展。

  • 在 x86 后端上,已经完成对 SSE 指令的支持,并在近期内重点支持 VNNI 指令集,使最新的 x86 处理器增加定点量化能力;
  • ARM Server 也是 OpenPPL 支持的一个特色后端,除了支持更多的网络模型和算子,今年也将重点支持 Int 8 数据精度推理和 ARM v9 特性;
  • 我们目前已支持 RISC-V 后端,后续将兼容 RVV 0.7.1 和 RVV 1.0 标准版本,并添加可变长 VLEN 的支持。


OpenPPL 的目标是在各类 CPU、GPU、NPU 架构上都能提供高效便捷的深度学习模型推理部署的支持。我们期待有更多的同学能够试用和反馈意见,让 OpenPPL 在性能、平台支持和易用性等多个方面不断进步。

相关实践学习
2分钟自动化部署人生模拟器
本场景将带你借助云效流水线Flow实现人生模拟器小游戏的自动化部署
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
6月前
|
弹性计算 编解码 运维
飞天技术沙龙回顾:业务创新新选择,倚天Arm架构深入探讨
基于「倚天710自研芯片+CIPU云原生基础设施处理器」组合的倚天ECS实例为解决算力挑战提供新思路。
|
存储 运维 安全
架构师长文 | 七千字详解阿里云CIPU技术架构
架构师长文 | 七千字详解阿里云CIPU技术架构
1578 0
|
智能网卡 Linux 虚拟化
5月硬核预告!明晚开讲:Virtio 虚拟化技术趋势与 DPU 实践 | 第16 期
本期龙蜥大讲堂邀请了来自云豹智能高级工程师 ​Will Sun做分享,本周三(明天)下午4点,不见不散!
5月硬核预告!明晚开讲:Virtio 虚拟化技术趋势与 DPU 实践 | 第16 期
|
存储 达摩院 安全
阿里云底层自研技术迎来大爆发,倚天、磐久等多款产品接连发布
今天,2021杭州·云栖大会正式开幕。大会上,阿里巴巴正式发布自研云芯片倚天710,这是阿里云推进「一云多芯」策略的重要一步,也是阿里第一颗为云而生的CPU芯片,将在阿里云数据中心部署应用。
1460 0
阿里云底层自研技术迎来大爆发,倚天、磐久等多款产品接连发布
|
芯片 异构计算
FPGA设计中遇到的奇葩问题之“芯片也要看出身”(一)
FPGA设计中遇到的奇葩问题之“芯片也要看出身”(一) 昨夜西风凋碧树。独上高楼,望尽天涯路 2000年的时候,做设计基本都是使用Xilinx公司的Virtex和Virtex-E系列芯片。那时候Altera技术实力还比较弱,基于Altera的芯片做设计是要被大家diss的。
6164 0
FPGA设计中遇到的奇葩问题之“芯片也要看出身”(一)
|
芯片 异构计算
FPGA设计中遇到的奇葩问题之“芯片也要看出身”(三)
FPGA设计中遇到的奇葩问题之“芯片也要看出身”(三)                                                                                        众里寻他千百度,蓦然回首,那人却在,灯火阑珊处   工程师都知道,寻找好板和坏板之间的“差异”是定位问题的利器之一啊。
5226 0
FPGA设计中遇到的奇葩问题之“芯片也要看出身”(三)
|
人工智能 达摩院 算法
阿里达摩院布局“中国芯”,自研AI芯片性价比超同类40倍
4月19日,澎湃新闻(www.thepaper.cn)记者从阿里巴巴达摩院获悉,盖机构正研发一款神经网络芯片——Ali-NPU,运用于图像视频分析、机器学习等AI推理计算。按照设计,这款芯片性能将是目前市面上主流CPU、GPU架构AI芯片的10倍,而制造成本和功耗仅为一半,性价比超过40倍。
12344 1
|
芯片 异构计算
FPGA设计中遇到的奇葩问题之“芯片也要看出身”(二)
FPGA设计中遇到的奇葩问题之“芯片也要看出身”(二) 衣带渐宽终不悔,为伊消得人憔悴   我一夜无眠,小心脏一直在忽冬忽冬滴乱跳。第二天我一头扎进了封闭的实验室。实验室里堆了好多单板,好的一堆,坏的一堆,然后各种仪器和电脑。
4480 0
FPGA设计中遇到的奇葩问题之“芯片也要看出身”(二)
|
机器学习/深度学习 人工智能 数据挖掘
专访阿里云异构计算负责人:异构计算,GPU、FPGA、ASIC芯片将三分天下
张献涛表示,“随着FPGA的生态环境的建立和完善、ASIC芯片的逐渐成熟,未来异构计算领域会呈现GPU、FPGA、ASIC芯片三分天下的局面,GPU、FPGA、ASIC芯片都会有自己独特的特长和应用领域。”
17037 0
|
人工智能 程序员 数据库
《云周刊》第120期:麒麟来了!PUE逼近1.0,阿里展示液冷黑科技
在本期云周刊的头条中,我们整理了有关阿里最新黑科技——麒麟服务器的资料。这款科技感十足的服务器通过将整台服务器浸在液体里来循环冷却,使能源使用率(PUE)逼近了理论极限值1.0,极低的能耗将促使麒麟成为阿里NASA计划的重要基础。
6674 0