案例实战 | Python 玩转 AB 测试中的分层抽样与假设检验!(附代码和数据集)(下)

简介: 在电商网站 AB 测试非常常见,是将统计学与程序代码结合的经典案例之一。尽管如此,里面还是有许多值得学习和注意的地方。 A/B 测试用于测试网页的修改效果(浏览量,注册率等),测试需进行一场实验,实验中控制组为网页旧版本,实验组为网页新版本,实验还需选出一个指标 来衡量每组用户的参与度,然后根据实验结果来判断哪个版本效果更好。 通过这些测试,我们可以观察什么样的改动能最大化指标,测试适用的改动类型十分广泛,上到增加元素的大改动,下到颜色小变动都可使用这些测试。

浏览时长分析


可视化分析


这里的我们将使用 seaborn 结合 markdown 公式的方式来实现快捷又强大的数据可视化


image.png

image.png


结果分析


  • 新界面的注册率有所提高,而浏览时长方面均呈现轻微的右偏


  • 实验组的浏览时长平均值比控制组高 15mins 左右,方差差别不大


所以我们可以初步判断新改版的课程首页更吸引用户,后续将进行假设检验来进一步验证我们的猜想


假设检验


我们将从控制组和实验组中各抽取一定数量的样本来进行假设检验,下面是置信水平 α 的选择经验:


样本量

α-level

≤ 100

10%

100 < n ≤ 500

5%

500 < n ≤ 1000

1%

n > 2000

千分之一


样本量过大,α-level 就没什么意义了。为了使假设检验的数据样本更加合理,我们可以使用分层抽样。Python 没有现成的库或函数,可以使用前人的轮子。


from mysampling import get_sample
# df: 输入的数据框 pandas.dataframe 对象
# sampling:抽样方法 str 
## 可选值有 ["simple_random","stratified","systematic"]
## 按顺序分别为: 简单随机抽样、分层抽样、系统抽样
# stratified_col: 需要分层的列名的列表 list,只有在分层抽样时才生效
# k: 抽样个数或抽样比例 int or float
    ## (int, 则必须大于0; float,则必须在区间(0,1)中)
    ## 如果 0< k <1, 则 k 表示抽样对于总体的比例
    ## 如果 k >=1, 则 k 表示抽样的个数;当为分层抽样时,代表每层的样本量
data =get_sample(df=course, sampling='stratified',
          stratified_col=['group'], k=300)
data.sample(4); data.info()


image.png


因为总体未知,所以我们可以使用两独立样本 T 检验,其实双样本 Z 检验也能达到类似的效果


# 总体未知,可采用两独立样本T检验
from scipy import stats
exp_duration = data.query('group == "experiment"')['duration']
con_duration = data.query('group == "control"')['duration']
print('两独立样本 T 检验...')
stats.ttest_ind(a=exp_duration, b=con_duration)
print('-'*45)print('双样本 Z 检验...')
import statsmodels.  api as sm
sm.stats.ztest(x1=exp_duration, x2=con_duration)


不难发现,有时双样本 Z 检验同样可以达到两独立样本 T 检验的效果。


image.png


综述,我们将拒绝零假设,接受 “ 新界面的浏览时长显著不同于(高于)旧界面 ” 的这个假设。


AB测试的不足


但 A/B 测试也有不足之处。虽然测试能帮你比较两种选择,但无法告诉你你还没想到的选择,在对老用户进行测试时,抗拒改变心理、新奇效应等因素都可能使测试结果出现偏差。


  • 抗拒改变心理:老用户可能会因为纯粹不喜欢改变而偏爱旧版本,哪怕从长远来看新版本更好。


  • 新奇效应:老用户可能会觉得变化很新鲜,受变化吸引而偏爱新版本,哪怕从长远看来新版本并无益处。


所以在设计 A/B 测试、基于测试结果得出结论时都需要考虑诸多因素。下面总结了一些常见考虑因素:


  • 老用户第一次体验改动会有新奇效应和改变抗拒心理;
  • 要得到可靠的显著结果,需要有足够的流量和转化率;
  • 要做出最佳决策,需选用最佳指标(如营收 vs 点击率);
  • 应进行足够的实验时长,以便解释天/周/季度事件引起的行为变化;
  • 转化率需具备现实指导意义(推出新元素的开支 vs 转化率提高带来的效益);
  • 对照组和实验组的测试对象要有一致性(两组样本数失衡会造成辛普森悖论等现象的发生)。
相关文章
|
30天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
30天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
48 10
|
1月前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
2月前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
2月前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。
|
18天前
|
监控 JavaScript 测试技术
postman接口测试工具详解
Postman是一个功能强大且易于使用的API测试工具。通过详细的介绍和实际示例,本文展示了Postman在API测试中的各种应用。无论是简单的请求发送,还是复杂的自动化测试和持续集成,Postman都提供了丰富的功能来满足用户的需求。希望本文能帮助您更好地理解和使用Postman,提高API测试的效率和质量。
70 11
|
2月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
70 3
|
3月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
83 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
4月前
|
移动开发 JSON Java
Jmeter实现WebSocket协议的接口测试方法
WebSocket协议是HTML5的一种新协议,实现了浏览器与服务器之间的全双工通信。通过简单的握手动作,双方可直接传输数据。其优势包括极小的头部开销和服务器推送功能。使用JMeter进行WebSocket接口和性能测试时,需安装特定插件并配置相关参数,如服务器地址、端口号等,还可通过CSV文件实现参数化,以满足不同测试需求。
280 7
Jmeter实现WebSocket协议的接口测试方法
|
4月前
|
JSON 移动开发 监控
快速上手|HTTP 接口功能自动化测试
HTTP接口功能测试对于确保Web应用和H5应用的数据正确性至关重要。这类测试主要针对后台HTTP接口,通过构造不同参数输入值并获取JSON格式的输出结果来进行验证。HTTP协议基于TCP连接,包括请求与响应模式。请求由请求行、消息报头和请求正文组成,响应则包含状态行、消息报头及响应正文。常用的请求方法有GET、POST等,而响应状态码如2xx代表成功。测试过程使用Python语言和pycurl模块调用接口,并通过断言机制比对实际与预期结果,确保功能正确性。
289 3
快速上手|HTTP 接口功能自动化测试