对数据系统的分类做一个定义

简介: 对数据系统的分类做一个定义

  对数据系统的分类做一个定义,数据系统如果按照主体来区分的话分为以下两类:

  应用为主体:常见的数据架构都是以『应用』为主体,数据主要产生自应用。数据架构围绕业务来设计,通常是先定义业务模型后设计业务流程。由于业务之间区分度很大,每个业务都有截然不同的业务模型,所以数据系统需要具备高度『抽象』的能力,所以通常会选择关系型数据库这类抽象能力强的组件作为核心存储。

  数据为主体:这类数据系统通常围绕『特定类型数据』进行构建,比如说围绕云原生监控数据设计的以 Prometheus 为核心的监控数据系统,再比如围绕日志数据分析设计的 ELK 数据系统。这类数据系统的设计过程通常是围绕数据的收集、存储、处理、查询和分析等环节来设计整套数据系统,数据具备统一的『具象』的模型。不同的场景有不同的数据系统,当某个场景具备通用性以及得到一定规模的应用,通常在开源界会诞生一套成熟的、完整的解决方案,比如说云原生 Prometheus、ELK、Hadoop 等。

  本篇文章介绍的数据架构主要是第一类,即以『应用为主体』的数据架构。

  应用系统数据架构

  应用系统数据架构历经了多次迭代,从传统的单一系统数据架构,到多组件构成的现代数据架构。现代数据架构下包含不同的计算和存储组件,这些组件在处理不同类型数据以及负载下各有优劣。现代数据架构通过合理选择和组合这些组件,让各个组件能发挥最大的能力,从而让整个数据系统能满足更多样化的场景需求以及支撑更大的数据规模。

目录
打赏
0
0
0
0
617
分享
相关文章
建模底层逻辑问题之在建模过程中,知识层和操作层如何区分
建模底层逻辑问题之在建模过程中,知识层和操作层如何区分
领域建模问题之建模中归类分组是什么
领域建模问题之建模中归类分组是什么
数据分类分级实践难点
数据分类分级是开展数据全生命周期管理的基础,企业做好数据分类分级才能更好地去落实合规义务以及进行数据安全管控。今天,我们从数据分类分级落地实践的角度,来阐述企业在开展数据分类分级过程中的难点以及如何“破局”。
518 1
数据分类分级-结构化数据识别与分类的算法实践
本文分享了用九智汇数据分类分级产品开发过程中,对数据识别和数据分类中涉及的算法进行抽象、融合,以形成标准化产品所做的努力和积累的经验。当然,算法只是分类分级产品的一小部分,整个产品设计,工程实现,也是支撑标准化产品的关键,但是限于作者水平有限,本文只讨论算法相关的话题,欢迎大家关注公众号以了解更多信息。
231 1
GraphIE:通过建模实例间和标签间依赖性联合抽取实体、关系和事件 论文解读
事件触发词检测、实体提及识别、事件论元抽取和关系抽取是信息抽取中的四个重要任务,它们被联合执行(联合信息抽取- JointIE),以避免错误传播并利用任务实例之间的依赖关系
217 1
数仓中指标-标签,维度-度量,自然键-代理键,数据集市等各名词解析及关系
这是在数据分析中常见的概念,下钻可以理解成增加维的层次,从而可以由粗粒度到细粒度来观察数据,比如对产品销售情况分析时,可以沿着时间维从年到月到日更细粒度的观察数据。从年的维度可以下钻到月的维度、日的维度等。
数仓中指标-标签,维度-度量,自然键-代理键,数据集市等各名词解析及关系
这个“2-3”的数据分类分级方法也许对你很有价值
当前,数据成为企业的生产要素参与分配,数据价值越发显得重要。
这个“2-3”的数据分类分级方法也许对你很有价值
量价关系分析
量价关系分析
467 0
量价关系分析
【DBMS 数据库管理系统】OLAP 核心技术 : 多维数据模型 ( 多维数据模型 | 维 | 维成员 | 维层 | 维层次 | 维属性 | 度量 )
【DBMS 数据库管理系统】OLAP 核心技术 : 多维数据模型 ( 多维数据模型 | 维 | 维成员 | 维层 | 维层次 | 维属性 | 度量 )
468 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等