谷歌、阿里、腾讯等在大规模图神经网络上必用的GNN加速算法(二)

简介: 谷歌、阿里、腾讯等在大规模图神经网络上必用的GNN加速算法(二)

2.Layer-wise sampling


2.1 FastGCN



220cce32af70bd4fdc5792ab786e4687.png


论文标题:FastGCN: fast learning with graph convolutional networks via importance sampling


论文来源:ICLR2018


论文方向:图卷积网络


论文链接:https://arxiv.org/abs/1801.10247


我们已知,GCN的形式为:


bd6a734a1040bd188eb36492a22b4552.png


从积分的角度看待图卷积,假设图是无限大图的子集,所有结点为独立同分布的结点,满足


6e96041cb8a507871be32b1713ba13a1.png

34861fd0e9299f8c29f9af7f5b3ed9d5.png



则可以应用蒙特卡洛法,对每一层进行采样 个结点, 来近似积分,以前层的结点作为共享邻居集合:


e1e62940a33e79fb60b73eb9b939f146.png


此外为了减少估计方差(Variance Reduction),采用重要性采样(Importance samling),结点根据以下概率分布采样:



27e8dd3caf602914b05a7bffaee70c2d.pnge1e62940a33e79fb60b73eb9b939f146.png


2.2 ASGCN



777c6424ebb516400c28710aff57f04f.png


论文标题:Adaptive Sampling Towards Fast Graph Representation Learning


论文来源:NIPS2018


论文方向:图卷积网络


论文链接:https://arxiv.org/abs/1809.05343


c75393a181f27cc21858ae441c79a179.png


对FastGCN的最后一个公式,其最优的解(最小化从 抽样出的结点的方差, )为:


3f5c839b4e947af2cd8bf8ee4484c3f2.png


其中 ,而 则是上一层结点从邻居聚集而来的隐层表示。在FastGCN中,则有


为了防止递归困境,为importance sampling学习一个独立的决定其重要性的函数(Adaptive sampling),基于结点的特征 来计算:


1dd3c5a52cba28d0c31001f71776c9d0 (1).png


因此最终的抽样结点的分布为:


501ad53199ad6004ee38891e4b551be4.png

相关文章
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
208 80
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 数据采集 人工智能
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
层次化Softmax算法通过引入Huffman树结构,将传统Softmax的计算复杂度从线性降至对数级别,显著提升了大规模词汇表的训练效率。该算法不仅优化了计算效率,还在处理大规模离散分布问题上提供了新的思路。文章详细介绍了Huffman树的构建、节点编码、概率计算及基于Gensim的实现方法,并讨论了工程实现中的优化策略与应用实践。
85 15
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
283 30
|
3月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
3月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
3月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
3月前
|
算法 测试技术 量子技术
时隔5年,谷歌再创量子霸权里程碑!RCS算法让电路体积增加一倍
谷歌在量子计算领域取得重大突破,通过随机电路采样(RCS)算法,成功将量子电路体积翻倍,实现了量子霸权的里程碑。这一成果发表于《自然》杂志,展示了量子动力学与噪声交互作用下的相变现象,推动了量子计算在密码学、材料科学等领域的应用潜力。尽管如此,量子计算仍面临错误率高、可扩展性差等挑战。
77 3
|
3月前
|
算法 测试技术 量子技术
时隔5年,谷歌再创量子霸权里程碑!RCS算法让电路体积增加一倍
谷歌在量子计算领域取得新突破,其研究人员在《自然》杂志上发表论文《随机电路采样中的相变》,介绍了一种名为随机电路采样(RCS)的算法。该算法通过优化量子关联速度、防止经典简化和利用相变现象,使量子电路体积在相同保真度下增加一倍,为量子计算的发展树立了新的里程碑。实验结果显示,RCS算法在67个量子比特和32个周期的条件下,实现了1.5×10^-3的保真度。这一成果不仅提升了量子计算的效率,也为解决噪声问题提供了新思路。
108 3

热门文章

最新文章