Redis 面霸篇:高频问题横扫核心知识点 (一)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
日志服务 SLS,月写入数据量 50GB 1个月
简介: 从高频面试问题跟大家一起横扫 Redis 核心知识点,从根本上理解 Redis ,不做八股文的工具人,做扭转乾坤的大神。

Redis 为什么这么快?


很多人只知道是 K/V NoSQl 内存数据库,单线程……这都是没有全面理解 Redis 导致无法继续深问下去。


这个问题是基础摸底,我们可以从 Redis 不同数据类型底层的数据结构实现、完全基于内存、IO 多路复用网络模型、线程模型、渐进式 rehash…...


到底有多快?


我们可以先说到底有多快,根据官方数据,Redis 的 QPS 可以达到约 100000(每秒请求数),有兴趣的可以参考官方的基准程序测试《How fast is Redis?》,地址:https://redis.io/topics/benchmarks


image.png


横轴是连接数,纵轴是 QPS。


这张图反映了一个数量级,通过量化让面试官觉得你有看过官方文档,很严谨。


基于内存实现


Redis 是基于内存的数据库,跟磁盘数据库相比,完全吊打磁盘的速度。


不论读写操作都是在内存上完成的,我们分别对比下内存操作与磁盘操作的差异。


磁盘调用


image.png


内存操作


内存直接由 CPU 控制,也就是 CPU 内部集成的内存控制器,所以说内存是直接与 CPU 对接,享受与 CPU 通信的最优带宽。


最后以一张图量化系统的各种延时时间(部分数据引用 Brendan Gregg)


image.png


高效的数据结构


学习 MySQL 的时候我知道为了提高检索速度使用了 B+ Tree 数据结构,所以 Redis 速度快应该也跟数据结构有关。


Redis 一共有 5 种数据类型,String、List、Hash、Set、SortedSet


不同的数据类型底层使用了一种或者多种数据结构来支撑,目的就是为了追求更快的速度。


码哥寄语:我们可以分别说明每种数据类型底层的数据结构优点,很多人只知道数据类型,而说出底层数据结构就能让人眼前一亮。


image.png


SDS 简单动态字符串优势


image.png


  1. SDS 中 len 保存这字符串的长度,O(1) 时间复杂度查询字符串长度信息。


  1. 空间预分配:SDS 被修改后,程序不仅会为 SDS 分配所需要的必须空间,还会分配额外的未使用空间。


  1. 惰性空间释放:当对 SDS 进行缩短操作时,程序并不会回收多余的内存空间,而是使用 free 字段将这些字节数量记录下来不释放,后面如果需要 append 操作,则直接使用 free 中未使用的空间,减少了内存的分配。


zipList 压缩列表


压缩列表是 List 、hash、 sorted Set 三种数据类型底层实现之一。


当一个列表只有少量数据的时候,并且每个列表项要么就是小整数值,要么就是长度比较短的字符串,那么 Redis 就会使用压缩列表来做列表键的底层实现。


image.png


这样内存紧凑,节约内存。


quicklist


后续版本对列表数据结构进行了改造,使用 quicklist 代替了 ziplist 和 linkedlist。


quicklist 是 ziplist 和 linkedlist 的混合体,它将 linkedlist 按段切分,每一段使用 ziplist 来紧凑存储,多个 ziplist 之间使用双向指针串接起来。


image.png


skipList 跳跃表


sorted set 类型的排序功能便是通过「跳跃列表」数据结构来实现。


跳跃表(skiplist)是一种有序数据结构,它通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。


跳表在链表的基础上,增加了多层级索引,通过索引位置的几个跳转,实现数据的快速定位,如下图所示:


image.png


整数数组(intset)


当一个集合只包含整数值元素,并且这个集合的元素数量不多时,Redis 就会使用整数集合作为集合键的底层实现,节省内存。


单线程模型


码哥寄语:我们需要注意的是,Redis 的单线程指的是 Redis 的网络 IO (6.x 版本后网络 IO 使用多线程)以及键值对指令读写是由一个线程来执行的。 对于 Redis 的持久化、集群数据同步、异步删除等都是其他线程执行。


千万别说 Redis 就只有一个线程。


单线程指的是 Redis 键值对读写指令的执行是单线程。


先说官方答案,让人觉得足够严谨,而不是人云亦云去背诵一些博客。


官方答案:因为 Redis 是基于内存的操作,CPU 不是 Redis 的瓶颈,Redis 的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。原文地址:https://redis.io/topics/faq。


为啥不用多线程执行充分利用 CPU 呢?


在运行每个任务之前,CPU 需要知道任务在何处加载并开始运行。也就是说,系统需要帮助它预先设置 CPU 寄存器和程序计数器,这称为 CPU 上下文。


切换上下文时,我们需要完成一系列工作,这是非常消耗资源的操作。


引入多线程开发,就需要使用同步原语来保护共享资源的并发读写,增加代码复杂度和调试难度。


单线程又什么好处?


  1. 不会因为线程创建导致的性能消耗;


  1. 避免上下文切换引起的 CPU 消耗,没有多线程切换的开销;


  1. 避免了线程之间的竞争问题,比如添加锁、释放锁、死锁等,不需要考虑各种锁问题。


  1. 代码更清晰,处理逻辑简单。


I/O 多路复用模型


Redis 采用 I/O 多路复用技术,并发处理连接。采用了 epoll + 自己实现的简单的事件框架。


epoll 中的读、写、关闭、连接都转化成了事件,然后利用 epoll 的多路复用特性,绝不在 IO 上浪费一点时间。


image.png



Redis 线程不会阻塞在某一个特定的监听或已连接套接字上,也就是说,不会阻塞在某一个特定的客户端请求处理上。正因为此,Redis 可以同时和多个客户端连接并处理请求,从而提升并发性。


Redis 全局 hash 字典


Redis 整体就是一个 哈希表来保存所有的键值对,无论数据类型是 5 种的任意一种。哈希表,本质就是一个数组,每个元素被叫做哈希桶,不管什么数据类型,每个桶里面的 entry 保存着实际具体值的指针。


image.png


而哈希表的时间复杂度是 O(1),只需要计算每个键的哈希值,便知道对应的哈希桶位置,定位桶里面的 entry 找到对应数据,这个也是 Redis 快的原因之一。


Redis 使用对象(redisObject)来表示数据库中的键值,当我们在 Redis 中创建一个键值对时,至少创建两个对象,一个对象是用做键值对的键对象,另一个是键值对的值对象。


也就是每个 entry 保存着 「键值对」的 redisObject 对象,通过 redisObject 的指针找到对应数据。


typedef struct redisObject{
    //类型
   unsigned type:4;
   //编码
   unsigned encoding:4;
   //指向底层数据结构的指针
   void *ptr;
    //...
 }robj;


Hash 冲突怎么办?


Redis 通过链式哈希解决冲突:也就是同一个 桶里面的元素使用链表保存。但是当链表过长就会导致查找性能变差可能,所以 Redis 为了追求快,使用了两个全局哈希表。用于 rehash 操作,增加现有的哈希桶数量,减少哈希冲突。


开始默认使用 「hash 表 1 」保存键值对数据,「hash 表 2」 此刻没有分配空间。当数据越来多触发 rehash 操作,则执行以下操作:


  1. 给 「hash 表 2 」分配更大的空间;


  1. 将 「hash 表 1 」的数据重新映射拷贝到 「hash 表 2」 中;


  1. 释放 hash 表 1 的空间。


值得注意的是,将 hash 表 1 的数据重新映射到 hash 表 2 的过程中并不是一次性的,这样会造成 Redis 阻塞,无法提供服务。


而是采用了渐进式 rehash,每次处理客户端请求的时候,先从「 hash 表 1」 中第一个索引开始,将这个位置的 所有数据拷贝到 「hash 表 2」 中,就这样将 rehash 分散到多次请求过程中,避免耗时阻塞。


Redis 如何实现持久化?宕机后如何恢复数据?


Redis 的数据持久化使用了「RDB 数据快照」的方式来实现宕机快速恢复。但是 过于频繁的执行全量数据快照,有两个严重性能开销:


  1. 频繁生成 RDB 文件写入磁盘,磁盘压力过大。会出现上一个 RDB 还未执行完,下一个又开始生成,陷入死循环。


  1. fork 出 bgsave 子进程会阻塞主线程,主线程的内存越大,阻塞时间越长。


所以 Redis 还设计了 AOF 写后日志记录对内存进行修改的指令记录。


面试官:什么是 RDB 内存快照?


在 Redis 执行「写」指令过程中,内存数据会一直变化。所谓的内存快照,指的就是 Redis 内存中的数据在某一刻的状态数据。


好比时间定格在某一刻,当我们拍照的,通过照片就能把某一刻的瞬间画面完全记录下来。


Redis 跟这个类似,就是把某一刻的数据以文件的形式拍下来,写到磁盘上。这个快照文件叫做 RDB 文件,RDB 就是 Redis DataBase 的缩写。


image.png


在做数据恢复时,直接将 RDB 文件读入内存完成恢复。


面试官:在生成 RDB 期间,Redis 可以同时处理写请求么?


可以的,Redis 使用操作系统的多进程写时复制技术 COW(Copy On Write) 来实现快照持久化,保证数据一致性。


Redis 在持久化时会调用 glibc 的函数fork产生一个子进程,快照持久化完全交给子进程来处理,父进程继续处理客户端请求。


当主线程执行写指令修改数据的时候,这个数据就会复制一份副本, bgsave 子进程读取这个副本数据写到 RDB 文件。


这既保证了快照的完整性,也允许主线程同时对数据进行修改,避免了对正常业务的影响。


image.png


面试官:那 AOF 又是什么?


AOF 日志记录了自 Redis 实例创建以来所有的修改性指令序列,那么就可以通过对一个空的 Redis 实例顺序执行所有的指令,也就是「重放」,来恢复 Redis 当前实例的内存数据结构的状态。


Redis 提供的 AOF 配置项appendfsync写回策略直接决定 AOF 持久化功能的效率和安全性。


  • always:同步写回,写指令执行完毕立马将 aof_buf缓冲区中的内容刷写到 AOF 文件。


  • everysec:每秒写回,写指令执行完,日志只会写到 AOF 文件缓冲区,每隔一秒就把缓冲区内容同步到磁盘。


  • no: 操作系统控制,写执行执行完毕,把日志写到 AOF 文件内存缓冲区,由操作系统决定何时刷写到磁盘。


没有两全其美的策略,我们需要在性能和可靠性上做一个取舍。


面试官:既然 RDB 有两个性能问题,那为何不用 AOF 即可。


AOF 写前日志,记录的是每个「写」指令操作。不会像 RDB 全量快照导致性能损耗,但是执行速度没有 RDB 快,同时日志文件过大也会造成性能问题。


所以,Redis 设计了一个杀手锏「AOF 重写机制」,Redis 提供了 bgrewriteaof指令用于对 AOF 日志进行瘦身。


其原理就是开辟一个子进程对内存进行遍历转换成一系列 Redis 的操作指令,序列化到一个新的 AOF 日志文件中。序列化完毕后再将操作期间发生的增量 AOF 日志追加到这个新的 AOF 日志文件中,追加完毕后就立即替代旧的 AOF 日志文件了,瘦身工作就完成了。


image.png


面试官:如何实现 数据尽可能少丢失又能兼顾性能呢?


重启 Redis 时,我们很少使用 rdb 来恢复内存状态,因为会丢失大量数据。我们通常使用 AOF 日志重放,但是重放 AOF 日志性能相对 rdb 来说要慢很多,这样在 Redis 实例很大的情况下,启动需要花费很长的时间。


Redis 4.0 为了解决这个问题,带来了一个新的持久化选项——混合持久化。将 rdb 文件的内容和增量的 AOF 日志文件存在一起。这里的 AOF 日志不再是全量的日志,而是自持久化开始到持久化结束的这段时间发生的增量 AOF 日志,通常这部分 AOF 日志很小。


于是在 Redis 重启的时候,可以先加载 rdb 的内容,然后再重放增量 AOF 日志就可以完全替代之前的 AOF 全量文件重放,重启效率因此大幅得到提升



相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
3月前
|
运维 NoSQL 测试技术
从一个事故中理解Redis(几乎)所有知识点
作者从一个事故中总结了Redis(几乎)所有的知识点,供大家学习。
136 12
|
8月前
|
缓存 NoSQL 定位技术
深入探索Redis:面试中必须掌握的关键知识点
深入探索Redis:面试中必须掌握的关键知识点
|
存储 NoSQL 测试技术
关于redis涉及的知识点,C语言如何操作redis
关于redis涉及的知识点,C语言如何操作redis
|
存储 SpringCloudAlibaba 运维
Redis高级知识点总结
在 Redis 6.0 中,非常受关注的第一个新特性就是多线程。这是因为,Redis 一直被大家熟知的就是它的单线程架构,虽然有些命令操作可以用后台线程或子进程执行(比如数据删除、快照生成、AOF 重写),但是,**从网络 IO 处理到实际的读写命令处理,都是由单个线程完成的**。随着网络硬件的性能提升,Redis 的性能瓶颈有时会出现在网络 IO 的处理上,也就是说,单个主线程处理网络请求的速度跟不上底层网络硬件的速度
269 0
Redis高级知识点总结
|
存储 缓存 NoSQL
redis知识点
redis 知识点
89 0
|
缓存 监控 NoSQL
【Redis】Redis知识点阶段性总结 2
【Redis】Redis知识点阶段性总结
66 0
|
NoSQL Linux Redis
【Redis】Redis知识点阶段性总结 1
【Redis】Redis知识点阶段性总结
103 0
|
存储 缓存 监控
全新Redis6全部知识点,零基础入门3
全新Redis6全部知识点,零基础入门
12242 1
|
存储 缓存 NoSQL
全新Redis6全部知识点,零基础入门2
全新Redis6全部知识点,零基础入门
|
存储 缓存 JSON
全新Redis6全部知识点,零基础入门1
全新Redis6全部知识点,零基础入门