Google Earth Engine——GOES卫星是由NOAA运行的地球静止气象卫星,火灾(HSC)产品包含四张图像:一张是火灾掩码形式,另外三张是确定火灾温度、火灾面积和火灾辐射功率的像素值

简介: Google Earth Engine——GOES卫星是由NOAA运行的地球静止气象卫星,火灾(HSC)产品包含四张图像:一张是火灾掩码形式,另外三张是确定火灾温度、火灾面积和火灾辐射功率的像素值

GOES satellites are geostationary weather satellites run by NOAA.

 

The Fire (HSC) product contains four images: one in the form of a fire mask and the other three with pixel values identifying fire temperature, fire area, and fire radiative power.

The ABI L2+ FHS metadata mask assigns a flag to every earth-navigated pixel that indicates its disposition with respect to the FHS algorithm. Operational users who have the lowest tolerance for false alarms should focus on the "processed" and "saturated" categories (mask codes 10, 11, 30, and 31), but within these categories there can still be false alarms.

README

NOAA provides the following scripts for suggested categories, color maps, and visualizations:

  • GOES-16-17_FireDetection.js
  • GOES-16-17_FireReclassification.jsGOES卫星是由NOAA运行的地球静止气象卫星。
    火灾(HSC)产品包含四张图像:一张是火灾掩码形式,另外三张是确定火灾温度、火灾面积和火灾辐射功率的像素值。
    ABI L2+ FHS元数据掩码为每个地球导航的像素分配一个标志,表明其在FHS算法方面的处置。对误报容忍度最低的操作用户应关注 "已处理 "和 "已饱和 "类别(掩码10、11、30和31),但在这些类别中仍可能有误报。
    阅读提示
    NOAA为建议的类别、彩图和可视化提供了以下脚本。
    GOES-16-17_FireDetection.js
    GOES-16-17_FireReclassification.js

Dataset Availability

2017-05-24T00:00:00 - 2021-09-30T00:00:00

Dataset Provider

NOAA

Collection Snippet

ee.ImageCollection("NOAA/GOES/16/FDCC")

Resolution

2000 meters

Bands Table

Name Description Min Max Units Scale Offset
Area Fire area m^2 60.98 4000
Temp Fire temperature K 0.05493667 400
Mask Fire mask categories. Pixel values in the fire mask image identify a fire category and diagnostic information associated with algorithm execution. The six fire categories include: Good quality or temporally filtered good quality fire pixel; Saturated fire pixel or temporally filtered saturated fire pixel; Cloud contaminated or temporally filtered cloud contaminated fire pixel; High probability or temporally filtered high probability fire pixel; Medium probability or temporally filtered high probability fire pixel; Low probability or temporally filtered high probability fire. Temporally filtered fire pixels are those resulting from fire pixels that are in close proximity in both space and time. 0 0
Power Fire radiative power 0 200000 MW 0 0
DQF Data quality flags 0 5 0 0

* = Values are estimated

Class Table: Mask

Value Color Color Value Description
10 #red Processed fire
11 #white Saturated fire
12 #slategray Cloud contaminated fire
13 #orange High probability fire
14 #violet Medium probability fire
15 #blue Low probability fire
30 #darkred Processed fire, filtered
31 #ghostwhite Saturated fire, filtered
32 #darkslategray Cloud contaminated fire, filtered
33 #darkorange High probability fire, filtered
34 #darkviolet Medium probability fire, filtered
35 #darkblue Low probability fire, filtered

Class Table: DQF

Value Color Color Value Description
0 #ffffff Good quality fire
1 #ff00ff Good quality fire-free land
2 #0000ff Invalid due to opaque cloud
3 #00ffff Invalid due to surface type or sunglint or LZA threshold exceeded or off earth or missing input data
4 #ffff00 Invalid due to bad input data
5 #ff0000 Invalid due to algorithm failure


数据使用:

NOAA data, information, and products, regardless of the method of delivery, are not subject to copyright and carry no restrictions on their subsequent use by the public. Once obtained, they may be put to any lawful use.


数据引用:

Early characterization of the active fire detection products derived from the next generation NPOESS/VIIRS and GOES-R/ABI instruments. Schroeder, W., Csiszar, I., et al, (2010), Early characterization of the active fire detection products derived from the next generation NPOESS/VIIRS and GOES-R/ABI instruments, paper presented at 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI. doi:10.1109/IGARSS.2010.5650863

Schmit, T., Griffith, P., et al, (2016), A closer look at the ABI on the GOES-R series, Bull. Amer. Meteor. Soc., 98(4), 681-698. doi:10.1175/BAMS-D-15-00230.1

代码:

// NOAA GOES-16同域火灾产品的单一时间片。
var image = ee.Image('NOAA/GOES/16/FDCC/2019297103632900000');
var area = image.select('Area');
var temp = image.select('Temp');
var dqf = image.select('DQF');
var xmin = -145;
var ymin = 15;
var xmax = -55;
var ymax = 54;
var geometry = ee.Geometry.Rectangle({
  coords: [xmin, ymin, xmax, ymax], geodesic: false});
Map.centerObject(geometry, 3);
var DQFVis = {
  min: 0,
  max: 5,
  palette: [
    'blanchedalmond',  // Good quality fire pixel
    'olive',           // Good quality fire free land
    'teal',            // Opaque cloud
                       // Bad surface type, sunglint, LZA threshold exceeded,
    'darkslateblue',   // off earth, or missing input data
    'lemonchiffon',    // Bad input data
    'burlywood'        // Algorithm failure
  ]};
Map.addLayer(dqf, DQFVis, 'DQF');
// 火灾很小,在整个GOES图像中很难看到它们。
// 整个GOES图像。 根据面积对火灾进行缓冲,使其更加突出。
var area = area.reduceToVectors({
  geometry: geometry,
  scale: 2000,
  geometryType: 'centroid',
  labelProperty: 'area',
  maxPixels: 1e10,
}).map(function(feature){
  return feature.buffer(ee.Number(feature.get('area')).add(1).pow(1.4));
});
Map.addLayer(area, {color: 'orange'}, 'area');
// 根据温度进行缓冲发射,以使其脱颖而出。
var temp = temp.reduceToVectors({
  geometry: geometry,
  scale: 2000,
  geometryType: 'centroid',
  labelProperty: 'temp',
  maxPixels: 1e10,
}).map(function(feature){
  return feature.buffer(ee.Number(feature.get('temp')).add(2).pow(1.27));
});
Map.addLayer(temp, {color: 'red'}, 'temp');

数据集:NOAA/GOES/17/FDCC

代码:

// NOAA GOES-17 conterminous fire product for a single time slice.
var image = ee.Image('NOAA/GOES/17/FDCC/2019297090619600000');
var area = image.select('Area');
var temp = image.select('Temp');
var dqf = image.select('DQF');
Map.centerObject(image, 3);
var geometry = image.geometry();
var DQFVis = {
  min: 0,
  max: 5,
  palette: [
    'blanchedalmond',  // Good quality fire pixel
    'olive',           // Good quality fire free land
    'teal',            // Opaque cloud
                       // Bad surface type, sunglint, LZA threshold exceeded,
    'darkslateblue',   // off earth, or missing input data
    'lemonchiffon',    // Bad input data
    'burlywood'        // Algorithm failure
  ]};
Map.addLayer(dqf, DQFVis, 'DQF');
// Fires are small enough that they are difficult to see at the scale of
// an entire GOES image.  Buffer fires based on area to make them stand out.
var area = area.reduceToVectors({
  geometry: geometry,
  scale: 2000,
  geometryType: 'centroid',
  labelProperty: 'area',
  maxPixels: 1e10,
}).map(function(feature){
  return feature.buffer(ee.Number(feature.get('area')).add(1).pow(1.4));
});
Map.addLayer(area, {color: 'orange'}, 'area');
// Buffer fires based on temperature to make them stand out.
var temp = temp.reduceToVectors({
  geometry: geometry,
  scale: 2000,
  geometryType: 'centroid',
  labelProperty: 'temp',
  maxPixels: 1e10,
}).map(function(feature){
  return feature.buffer(ee.Number(feature.get('temp')).add(2).pow(1.2));
});
Map.addLayer(temp, {color: 'red'}, 'temp');


相关文章
|
7月前
|
人工智能 算法
Google Earth Engine(GEE) ——2000-2021年地球非洲海岸线数据集
Google Earth Engine(GEE) ——2000-2021年地球非洲海岸线数据集
91 0
|
6月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI产品使用合集之PAI-DSW实例服务器ping不通google.com,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
分布式计算 Kubernetes 监控
容器服务Kubernetes版产品使用合集之registry.aliyuncs.com/google_containers 镜像仓库的地址是什么
容器服务Kubernetes版,作为阿里云提供的核心服务之一,旨在帮助企业及开发者高效管理和运行Kubernetes集群,实现应用的容器化与微服务化。以下是关于使用这些服务的一些建议和合集,涵盖基本操作、最佳实践、以及一些高级功能的使用方法。
724 0
|
7月前
|
人工智能
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
158 0
Google Earth Engine(GEE)——全球1公里的云量MODIS图像数据集
|
7月前
Google Earth Engine(GEE)——当你无法进行两个图像相减的时候发生错误lst2020.subtract is not a function
Google Earth Engine(GEE)——当你无法进行两个图像相减的时候发生错误lst2020.subtract is not a function
88 0
|
7月前
|
编解码 人工智能 计算机视觉
Google Earth Engine(GEE)——Umbra卫星翁布拉合成孔径雷达公开数据
Google Earth Engine(GEE)——Umbra卫星翁布拉合成孔径雷达公开数据
118 0
|
7月前
|
传感器 编解码 人工智能
Google Earth Engine(GEE)——存档的NRT FIRMS全球VIIRS和MODIS火灾产品矢量数据
Google Earth Engine(GEE)——存档的NRT FIRMS全球VIIRS和MODIS火灾产品矢量数据
158 0
|
7月前
|
机器学习/深度学习 编解码 人工智能
Google Earth Engine(GEE)——2019年数字地球非洲的耕地范围地图
Google Earth Engine(GEE)——2019年数字地球非洲的耕地范围地图
77 0
|
7月前
|
人工智能
Google Earth Engine (GEE) ——gee中自带的Landsat8和5数据集对于温度波段的映射出现无法运行的情况
Google Earth Engine (GEE) ——gee中自带的Landsat8和5数据集对于温度波段的映射出现无法运行的情况
106 0
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2691 1
如何用Google Earth Engine快速、大量下载遥感影像数据?