Google Earth Engine——GOES卫星是由NOAA运行的地球静止气象卫星,火灾(HSC)产品包含四张图像:一张是火灾掩码形式,另外三张是确定火灾温度、火灾面积和火灾辐射功率的像素值

简介: Google Earth Engine——GOES卫星是由NOAA运行的地球静止气象卫星,火灾(HSC)产品包含四张图像:一张是火灾掩码形式,另外三张是确定火灾温度、火灾面积和火灾辐射功率的像素值

GOES satellites are geostationary weather satellites run by NOAA.

 

The Fire (HSC) product contains four images: one in the form of a fire mask and the other three with pixel values identifying fire temperature, fire area, and fire radiative power.

The ABI L2+ FHS metadata mask assigns a flag to every earth-navigated pixel that indicates its disposition with respect to the FHS algorithm. Operational users who have the lowest tolerance for false alarms should focus on the "processed" and "saturated" categories (mask codes 10, 11, 30, and 31), but within these categories there can still be false alarms.

README

NOAA provides the following scripts for suggested categories, color maps, and visualizations:

  • GOES-16-17_FireDetection.js
  • GOES-16-17_FireReclassification.jsGOES卫星是由NOAA运行的地球静止气象卫星。
    火灾(HSC)产品包含四张图像:一张是火灾掩码形式,另外三张是确定火灾温度、火灾面积和火灾辐射功率的像素值。
    ABI L2+ FHS元数据掩码为每个地球导航的像素分配一个标志,表明其在FHS算法方面的处置。对误报容忍度最低的操作用户应关注 "已处理 "和 "已饱和 "类别(掩码10、11、30和31),但在这些类别中仍可能有误报。
    阅读提示
    NOAA为建议的类别、彩图和可视化提供了以下脚本。
    GOES-16-17_FireDetection.js
    GOES-16-17_FireReclassification.js

Dataset Availability

2017-05-24T00:00:00 - 2021-09-30T00:00:00

Dataset Provider

NOAA

Collection Snippet

ee.ImageCollection("NOAA/GOES/16/FDCC")

Resolution

2000 meters

Bands Table

Name Description Min Max Units Scale Offset
Area Fire area m^2 60.98 4000
Temp Fire temperature K 0.05493667 400
Mask Fire mask categories. Pixel values in the fire mask image identify a fire category and diagnostic information associated with algorithm execution. The six fire categories include: Good quality or temporally filtered good quality fire pixel; Saturated fire pixel or temporally filtered saturated fire pixel; Cloud contaminated or temporally filtered cloud contaminated fire pixel; High probability or temporally filtered high probability fire pixel; Medium probability or temporally filtered high probability fire pixel; Low probability or temporally filtered high probability fire. Temporally filtered fire pixels are those resulting from fire pixels that are in close proximity in both space and time. 0 0
Power Fire radiative power 0 200000 MW 0 0
DQF Data quality flags 0 5 0 0

* = Values are estimated

Class Table: Mask

Value Color Color Value Description
10 #red Processed fire
11 #white Saturated fire
12 #slategray Cloud contaminated fire
13 #orange High probability fire
14 #violet Medium probability fire
15 #blue Low probability fire
30 #darkred Processed fire, filtered
31 #ghostwhite Saturated fire, filtered
32 #darkslategray Cloud contaminated fire, filtered
33 #darkorange High probability fire, filtered
34 #darkviolet Medium probability fire, filtered
35 #darkblue Low probability fire, filtered

Class Table: DQF

Value Color Color Value Description
0 #ffffff Good quality fire
1 #ff00ff Good quality fire-free land
2 #0000ff Invalid due to opaque cloud
3 #00ffff Invalid due to surface type or sunglint or LZA threshold exceeded or off earth or missing input data
4 #ffff00 Invalid due to bad input data
5 #ff0000 Invalid due to algorithm failure


数据使用:

NOAA data, information, and products, regardless of the method of delivery, are not subject to copyright and carry no restrictions on their subsequent use by the public. Once obtained, they may be put to any lawful use.


数据引用:

Early characterization of the active fire detection products derived from the next generation NPOESS/VIIRS and GOES-R/ABI instruments. Schroeder, W., Csiszar, I., et al, (2010), Early characterization of the active fire detection products derived from the next generation NPOESS/VIIRS and GOES-R/ABI instruments, paper presented at 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI. doi:10.1109/IGARSS.2010.5650863

Schmit, T., Griffith, P., et al, (2016), A closer look at the ABI on the GOES-R series, Bull. Amer. Meteor. Soc., 98(4), 681-698. doi:10.1175/BAMS-D-15-00230.1

代码:

// NOAA GOES-16同域火灾产品的单一时间片。
var image = ee.Image('NOAA/GOES/16/FDCC/2019297103632900000');
var area = image.select('Area');
var temp = image.select('Temp');
var dqf = image.select('DQF');
var xmin = -145;
var ymin = 15;
var xmax = -55;
var ymax = 54;
var geometry = ee.Geometry.Rectangle({
  coords: [xmin, ymin, xmax, ymax], geodesic: false});
Map.centerObject(geometry, 3);
var DQFVis = {
  min: 0,
  max: 5,
  palette: [
    'blanchedalmond',  // Good quality fire pixel
    'olive',           // Good quality fire free land
    'teal',            // Opaque cloud
                       // Bad surface type, sunglint, LZA threshold exceeded,
    'darkslateblue',   // off earth, or missing input data
    'lemonchiffon',    // Bad input data
    'burlywood'        // Algorithm failure
  ]};
Map.addLayer(dqf, DQFVis, 'DQF');
// 火灾很小,在整个GOES图像中很难看到它们。
// 整个GOES图像。 根据面积对火灾进行缓冲,使其更加突出。
var area = area.reduceToVectors({
  geometry: geometry,
  scale: 2000,
  geometryType: 'centroid',
  labelProperty: 'area',
  maxPixels: 1e10,
}).map(function(feature){
  return feature.buffer(ee.Number(feature.get('area')).add(1).pow(1.4));
});
Map.addLayer(area, {color: 'orange'}, 'area');
// 根据温度进行缓冲发射,以使其脱颖而出。
var temp = temp.reduceToVectors({
  geometry: geometry,
  scale: 2000,
  geometryType: 'centroid',
  labelProperty: 'temp',
  maxPixels: 1e10,
}).map(function(feature){
  return feature.buffer(ee.Number(feature.get('temp')).add(2).pow(1.27));
});
Map.addLayer(temp, {color: 'red'}, 'temp');

数据集:NOAA/GOES/17/FDCC

代码:

// NOAA GOES-17 conterminous fire product for a single time slice.
var image = ee.Image('NOAA/GOES/17/FDCC/2019297090619600000');
var area = image.select('Area');
var temp = image.select('Temp');
var dqf = image.select('DQF');
Map.centerObject(image, 3);
var geometry = image.geometry();
var DQFVis = {
  min: 0,
  max: 5,
  palette: [
    'blanchedalmond',  // Good quality fire pixel
    'olive',           // Good quality fire free land
    'teal',            // Opaque cloud
                       // Bad surface type, sunglint, LZA threshold exceeded,
    'darkslateblue',   // off earth, or missing input data
    'lemonchiffon',    // Bad input data
    'burlywood'        // Algorithm failure
  ]};
Map.addLayer(dqf, DQFVis, 'DQF');
// Fires are small enough that they are difficult to see at the scale of
// an entire GOES image.  Buffer fires based on area to make them stand out.
var area = area.reduceToVectors({
  geometry: geometry,
  scale: 2000,
  geometryType: 'centroid',
  labelProperty: 'area',
  maxPixels: 1e10,
}).map(function(feature){
  return feature.buffer(ee.Number(feature.get('area')).add(1).pow(1.4));
});
Map.addLayer(area, {color: 'orange'}, 'area');
// Buffer fires based on temperature to make them stand out.
var temp = temp.reduceToVectors({
  geometry: geometry,
  scale: 2000,
  geometryType: 'centroid',
  labelProperty: 'temp',
  maxPixels: 1e10,
}).map(function(feature){
  return feature.buffer(ee.Number(feature.get('temp')).add(2).pow(1.2));
});
Map.addLayer(temp, {color: 'red'}, 'temp');


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2341 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
524 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
84 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
126 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
74 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
252 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
116 0
|
6月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
120 0
|
6月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
148 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
217 0