Google Earth Engine——全球降水测量(GPM)NASA/GPM_L3/IMERG_MONTHLY_V06月度数据

简介: Google Earth Engine——全球降水测量(GPM)NASA/GPM_L3/IMERG_MONTHLY_V06月度数据

Global Precipitation Measurement (GPM) is an international satellite mission to provide next-generation observations of rain and snow worldwide every three hours. The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified algorithm that provides rainfall estimates combining data from all passive-microwave instruments in the GPM Constellation.

This algorithm is intended to intercalibrate, merge, and interpolate all satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators at fine time and space scales for the TRMM and GPM eras over the entire globe. The system is run several times for each observation time, first giving a quick estimate and successively providing better estimates as more data arrive. The final step uses monthly gauge data to create research-level products. See IMERG Technical Documentation for more details on the algorithm.

Documentation:


This collection contains provisional products that are regularly replaced with updated versions when the data become available. The products are marked with a metadata property called 'status'. When a product is initially made available, the property value is 'provisional'. Once a provisional product has been updated with the final version, this value is updated to 'permanent'.

This collection contains data from:


全球降水测量(GPM)是一项国际卫星任务,每三小时对全世界的雨雪进行一次新一代的观测。全球降水测量的综合多卫星检索(IMERG)是一种统一的算法,提供来自全球降水测量星座中所有无源微波仪器的数据的降水估计。

该算法旨在对所有卫星微波降水估计值进行相互校准、合并和内插,同时还包括微波校准的红外(IR)卫星估计值、降水仪分析,以及可能的其他降水估计值,其时间和空间尺度为TRMM和GPM时代的全球范围。该系统对每个观测时间都要运行数次,首先给出一个快速估计,随着更多数据的到来,陆续提供更好的估计。最后一步使用月度测绘数据来创建研究级产品。关于算法的更多细节,见IMERG技术文件。

文件。

算法的理论基础文件

IMERG质量指数

IMERG扩展到TRMM时代的注意事项

IMERG技术文档

发布说明;新的变形算法

遥感反射率

异常情况

这个集合包含了临时产品,当数据可用时,会定期用更新的版本替换。这些产品都标有一个名为 "状态 "的元数据属性。当一个产品最初被提供时,其属性值为 "临时"。一旦一个临时产品被更新为最终版本,这个值就会被更新为 "永久"。

这个集合包含的数据来自。

GPM_3IMERGHH_V06 doi:10.5067/GPM/IMERG/3B-HH-L/06

GPM_3IMERGHH_06 doi:10.5067/GPM/IMERG/3B-HH/06

 

Dataset Availability

2000-06-01T00:00:00 - 2021-09-28T00:00:00

Dataset Provider

NASA GES DISC at NASA Goddard Space Flight Center

Collection Snippet

ee.ImageCollection("NASA/GPM_L3/IMERG_V06")

Dataset Availability

2000-06-01T00:00:00 - 2021-09-28T00:00:00

Dataset Provider

NASA GES DISC at NASA Goddard Space Flight Center

Collection Snippet

Copied

ee.ImageCollection("NASA/GPM_L3/IMERG_V06")

Tags

precipitationgeophysicalweatherclimatenasagpmimergjaxahalf-hourly

DESCRIPTIONBANDSTERMS OF USECITATIONSDOIS

Resolution

11132 meters

Bands Table

Name Description Min* Max* Units
HQobservationTime PMW source time 0 29 min. into half hour
HQprecipSource PMW source sensor identifier
HQprecipSource Bitmask
  • Bits 0-3: PMW source sensor identifier
    • 0: No observation
    • 1: TMI
    • 2: (unused)
    • 3: AMSR
    • 4: SSMI
    • 5: SSMIS
    • 6: AMSU
    • 7: MHS
    • 8: SAPHIR
    • 9: GMI
    • 10: (unused)
    • 11: ATMS
    • 12: AIRS
    • 13: TOVS
    • 14: CRIS
HQprecipitation merged PMW precipitation 0 120 mm/hr
IRkalmanFilterWeight Kalman filter weight for IR 0 100 %
IRprecipitation IR precipitation 0 79.5 mm/hr
precipitationCal snapshot precipitation - calibrated 0 174 mm/hr
precipitationUncal snapshot precipitation - uncalibrated 0 120 mm/hr
probabilityLiquidPrecipitation probability of liquid precipitation phase 0 100 %
randomError calibrated-precipitation random error 0.24 250 mm/hr

* = Values are estimated


引用:

'Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, Jackson Tan (2019), GPM IMERG Final Precipitation L3 1 month 0.1 degree x 0.1 degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Data Access Date], 10.5067/GPM/IMERG/3B-MONTH/06'


代码:

// GPM V6 30 minute data around hurricane Dorian for a single day.
var range = ee.Date('2019-09-03').getRange('day');
var dataset = ee.ImageCollection('NASA/GPM_L3/IMERG_V06')
    .filter(ee.Filter.date(range));
// Select the max precipitation and mask out low precipitation values.
var precipitation = dataset.select('precipitationCal').max();
var mask = precipitation.gt(0.5);
var precipitation = precipitation.updateMask(mask);
var palette = [
  '000096','0064ff', '00b4ff', '33db80', '9beb4a',
  'ffeb00', 'ffb300', 'ff6400', 'eb1e00', 'af0000'
];
var precipitationVis = {min: 0.0, max: 15.0, palette: palette};
Map.addLayer(precipitation, precipitationVis, 'Precipitation');
Map.setCenter(-76, 33, 3);


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2597 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
94 0
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
237 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
621 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
118 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
157 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
80 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
279 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
137 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
130 0