Google Earth Engine ——数据全解析专辑(CPOM/CryoSat2/ANTARCTICA_DEM)南极洲10m精度DEM数据集

简介: Google Earth Engine ——数据全解析专辑(CPOM/CryoSat2/ANTARCTICA_DEM)南极洲10m精度DEM数据集

南极洲DEM数据

This dataset is a digital elevation model (DEM) of the Antarctic ice sheet and ice shelves based on observations recorded by the CryoSat-2 satellite radar altimeter between July 2010 and July 2016.


The DEM is formed from spatio-temporal fits to elevation measurements accumulated within 1, 2, and 5 km grid cells, and is posted at the modal resolution of 1 km. The median and root mean square difference between the DEM and 2.3*10⁷ airborne laser altimeter measurements acquired during NASA Operation IceBridge campaigns are -0.30 and 13.50 m, respectively.

The DEM uncertainty rises in regions of high slope, especially where elevation measurements were acquired in low-resolution mode; taking this into account, we estimate the average accuracy to be 9.5 m.

Dataset Availability

2010-07-01T00:00:00 - 2016-07-01T00:00:00

Dataset Provider

CPOM

Collection Snippet

ee.Image("CPOM/CryoSat2/ANTARCTICA_DEM")

Resolution

1000 meters

Bands Table

Name Description Units
elevation Antarctic ice sheet and ice shelf elevation. meters
data_composition Data processing method of elevation per grid cell.
slope Slope derived from elevation gradient. degrees
z_smoothed Smoothed version of elevation model using a median filter. meters
z_uncertainty Certainty of elevation model derived from RMS of elevation residuals in observed grid cells and the kriging variance error in interpolated grid cells. meters


Class Table: data_composition

Value Color Color Value Description
0 #000000 interpolated
1 #CBCBCB 1 km fit
2 #377EB7 resampled 2 km fit
3 #E2191B resampled 5 km fit


数据引用:

Slater, T., Shepherd, A., McMillan, M., Muir, A., Gilbert, L., Hogg, A. E., Konrad, H. and Parrinello, T.: A new Digital Elevation Model of Antarctica derived from CryoSat-2 altimetry, The Cryosphere, doi:10.5194/tc-2017-223, 2018


代码:

var dataset = ee.Image('CPOM/CryoSat2/ANTARCTICA_DEM');
var visualization = {
  bands: ['elevation'],
  min: 0.0,
  max: 4000.0,
  palette: ['001fff', '00ffff', 'fbff00', 'ff0000']
};
Map.setCenter(17.0, -76.0, 3);
Map.addLayer(dataset, visualization, 'Elevation');



相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
Google DeepMind新产物: 行星级卫星嵌入数据集(10m)光学+雷达+DEM+climate...
Google 推出 Earth Engine 卫星嵌入数据集,利用 AI 将一年的多源卫星数据压缩至每个 10 米像素,实现高效地理空间分析。基于 AlphaEarth Foundations 模型,该数据集提供 64 维嵌入向量,支持相似性搜索、变化检测、自动聚类和精准分类,助力环境研究与应用。
292 0
|
存储 数据库 Android开发
🔥Android Jetpack全解析!拥抱Google官方库,让你的开发之旅更加顺畅无阻!🚀
【7月更文挑战第28天】在Android开发中追求高效稳定的路径?Android Jetpack作为Google官方库集合,是你的理想选择。它包含多个独立又协同工作的库,覆盖UI到安全性等多个领域,旨在减少样板代码,提高开发效率与应用质量。Jetpack核心组件如LiveData、ViewModel、Room等简化了数据绑定、状态保存及数据库操作。引入Jetpack只需在`build.gradle`中添加依赖。例如,使用Room进行数据库操作变得异常简单,从定义实体到实现CRUD操作,一切尽在掌握之中。拥抱Jetpack,提升开发效率,构建高质量应用!
429 4
|
Java 数据库连接
提升编程效率的利器: 解析Google Guava库之IO工具类(九)
提升编程效率的利器: 解析Google Guava库之IO工具类(九)
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
1101 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
缓存 Java Maven
深入解析Google Guava库与Spring Retry重试框架
深入解析Google Guava库与Spring Retry重试框架
|
监控 安全 算法
提升编程效率的利器: 解析Google Guava库之RateLimiter优雅限流(十)
提升编程效率的利器: 解析Google Guava库之RateLimiter优雅限流(十)
|
缓存 安全 Java
提升编程效率的利器: 解析Google Guava库之集合工具类-50个示例(八)
提升编程效率的利器: 解析Google Guava库之集合工具类-50个示例(八)
|
缓存 算法 Java
提升编程效率的利器: 解析Google Guava库之常用工具类-40个示例(七)
提升编程效率的利器: 解析Google Guava库之常用工具类-40个示例(七)
提升编程效率的利器: 解析Google Guava库之集合篇RangeMap范围映射(六)
提升编程效率的利器: 解析Google Guava库之集合篇RangeMap范围映射(六)

热门文章

最新文章

推荐镜像

更多
  • DNS
  • 下一篇
    oss教程