yolo-world 源码解析(二)(2)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: yolo-world 源码解析(二)

yolo-world 源码解析(二)(1)https://developer.aliyun.com/article/1483841

.\YOLO-World\configs\pretrain\yolo_world_v2_l_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py

_base_ = ('../../third_party/mmyolo/configs/yolov8/'
          'yolov8_l_syncbn_fast_8xb16-500e_coco.py')
custom_imports = dict(imports=['yolo_world'],
                      allow_failed_imports=False)
# 定义基础配置文件路径
# 定义自定义导入模块和是否允许导入失败
# hyper-parameters
num_classes = 1203
num_training_classes = 80
max_epochs = 100  # Maximum training epochs
close_mosaic_epochs = 2
save_epoch_intervals = 2
text_channels = 512
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
base_lr = 2e-3
weight_decay = 0.05 / 2
train_batch_size_per_gpu = 16
# 定义超参数
# 定义类别数量、训练类别数量、最大训练轮数、关闭mosaic的轮数、保存模型的间隔轮数、文本通道数、neck嵌入通道数、neck头数、基础学习率、权重衰减、每GPU的训练批次大小
# model settings
model = dict(
    type='YOLOWorldDetector',
    mm_neck=True,
    num_train_classes=num_training_classes,
    num_test_classes=num_classes,
    data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
    backbone=dict(
        _delete_=True,
        type='MultiModalYOLOBackbone',
        image_model={{_base_.model.backbone}},
        text_model=dict(
            type='HuggingCLIPLanguageBackbone',
            model_name='openai/clip-vit-base-patch32',
            frozen_modules=['all'])),
    neck=dict(type='YOLOWorldPAFPN',
              guide_channels=text_channels,
              embed_channels=neck_embed_channels,
              num_heads=neck_num_heads,
              block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv')),
    bbox_head=dict(type='YOLOWorldHead',
                   head_module=dict(type='YOLOWorldHeadModule',
                                    use_bn_head=True,
                                    embed_dims=text_channels,
                                    num_classes=num_training_classes)),
    train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
# 定义模型设置
# 定义模型类型、是否使用neck、训练类别数量、测试类别数量、数据预处理器、骨干网络、neck、bbox头、训练配置
# dataset settings
text_transform = [
    dict(type='RandomLoadText',
         num_neg_samples=(num_classes, num_classes),
         max_num_samples=num_training_classes,
         padding_to_max=True,
         padding_value=''),
# 定义数据集设置
# 定义文本转换器
    # 创建一个字典对象,包含指定的键值对
    dict(type='mmdet.PackDetInputs',
         # 定义元数据的键名元组
         meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
                    'flip_direction', 'texts'))
# 定义训练管道,包含一系列数据处理和增强操作
train_pipeline = [
    *_base_.pre_transform,  # 使用基础预处理操作
    dict(type='MultiModalMosaic',  # 使用多模态马赛克操作
         img_scale=_base_.img_scale,  # 图像缩放比例
         pad_val=114.0,  # 填充值
         pre_transform=_base_.pre_transform),  # 预处理操作
    dict(
        type='YOLOv5RandomAffine',  # 使用YOLOv5随机仿射变换操作
        max_rotate_degree=0.0,  # 最大旋转角度
        max_shear_degree=0.0,  # 最大剪切角度
        scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),  # 缩放比例范围
        max_aspect_ratio=_base_.max_aspect_ratio,  # 最大长宽比
        border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),  # 边界
        border_val=(114, 114, 114)),  # 边界填充值
    *_base_.last_transform[:-1],  # 使用基础最后的转换操作
    *text_transform,  # 文本转换操作
]
# 定义第二阶段的训练管道
train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform]
# 定义obj365v1训练数据集
obj365v1_train_dataset = dict(
    type='MultiModalDataset',  # 多模态数据集类型
    dataset=dict(
        type='YOLOv5Objects365V1Dataset',  # 使用YOLOv5 Objects365V1数据集
        data_root='data/objects365v1/',  # 数据根目录
        ann_file='annotations/objects365_train.json',  # 标注文件
        data_prefix=dict(img='train/'),  # 数据前缀
        filter_cfg=dict(filter_empty_gt=False, min_size=32)),  # 过滤配置
    class_text_path='data/texts/obj365v1_class_texts.json',  # 类别文本路径
    pipeline=train_pipeline)  # 数据处理管道
# 定义mg训练数据集
mg_train_dataset = dict(type='YOLOv5MixedGroundingDataset',  # 使用YOLOv5混合定位数据集
                        data_root='data/mixed_grounding/',  # 数据根目录
                        ann_file='annotations/final_mixed_train_no_coco.json',  # 标注文件
                        data_prefix=dict(img='gqa/images/'),  # 数据前缀
                        filter_cfg=dict(filter_empty_gt=False, min_size=32),  # 过滤配置
                        pipeline=train_pipeline)  # 数据处理管道
# 定义flickr训练数据集
flickr_train_dataset = dict(
    type='YOLOv5MixedGroundingDataset',  # 使用YOLOv5混合定位数据集
    data_root='data/flickr/',  # 数据根目录
    ann_file='annotations/final_flickr_separateGT_train.json',  # 标注文件
    data_prefix=dict(img='full_images/'),  # 数据前缀
    filter_cfg=dict(filter_empty_gt=True, min_size=32),  # 过滤配置
    pipeline=train_pipeline)  # 数据处理管道
# 定义训练数据加载器,设置批量大小、数据集拼接方式、数据集列表和忽略的键
train_dataloader = dict(batch_size=train_batch_size_per_gpu,
                        collate_fn=dict(type='yolow_collate'),
                        dataset=dict(_delete_=True,
                                     type='ConcatDataset',
                                     datasets=[
                                         obj365v1_train_dataset,
                                         flickr_train_dataset, mg_train_dataset
                                     ],
                                     ignore_keys=['classes', 'palette']))
# 定义测试数据处理流程,包括加载文本和打包检测输入
test_pipeline = [
    *_base_.test_pipeline[:-1],
    dict(type='LoadText'),
    dict(type='mmdet.PackDetInputs',
         meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                    'scale_factor', 'pad_param', 'texts'))
]
# 定义 COCO 验证数据集,设置数据集类型、根目录、测试模式、注释文件、数据前缀和批量形状配置
coco_val_dataset = dict(
    _delete_=True,
    type='MultiModalDataset',
    dataset=dict(type='YOLOv5LVISV1Dataset',
                 data_root='data/coco/',
                 test_mode=True,
                 ann_file='lvis/lvis_v1_minival_inserted_image_name.json',
                 data_prefix=dict(img=''),
                 batch_shapes_cfg=None),
    class_text_path='data/texts/lvis_v1_class_texts.json',
    pipeline=test_pipeline)
# 定义验证数据加载器,设置数据集为 COCO 验证数据集
val_dataloader = dict(dataset=coco_val_dataset)
# 将测试数据加载器设置为验证数据加载器
test_dataloader = val_dataloader
# 定义验证评估器,设置评估类型为 LVIS 检测指标,注释文件为 LVIS 最小验证集的插入图像名称文件
val_evaluator = dict(type='mmdet.LVISMetric',
                     ann_file='data/coco/lvis/lvis_v1_minival_inserted_image_name.json',
                     metric='bbox')
# 将测试评估器设置为验证评估器
test_evaluator = val_evaluator
# 训练设置
# 默认钩子,设置参数调度器和检查点保存间隔
default_hooks = dict(param_scheduler=dict(max_epochs=max_epochs),
                     checkpoint=dict(interval=save_epoch_intervals,
                                     rule='greater'))
# 自定义钩子,设置指数动量 EMA 钩子的参数
custom_hooks = [
    dict(type='EMAHook',
         ema_type='ExpMomentumEMA',
         momentum=0.0001,
         update_buffers=True,
         strict_load=False,
         priority=49),
    # 创建一个字典,包含PipelineSwitchHook的相关参数
    dict(type='mmdet.PipelineSwitchHook', 
         # 设置切换pipeline的时机为最大训练轮数减去关闭mosaic的轮数
         switch_epoch=max_epochs - close_mosaic_epochs, 
         # 设置切换的pipeline为train_pipeline_stage2
         switch_pipeline=train_pipeline_stage2)
# 创建一个字典,包含训练配置参数
train_cfg = dict(max_epochs=max_epochs,  # 最大训练轮数
                 val_interval=10,  # 验证间隔
                 dynamic_intervals=[((max_epochs - close_mosaic_epochs),  # 动态间隔
                                     _base_.val_interval_stage2)])  # 验证阶段2的间隔设置
# 定义优化器包装器的配置参数
optim_wrapper = dict(optimizer=dict(
    _delete_=True,  # 删除原有的优化器配置
    type='AdamW',  # 优化器类型为AdamW
    lr=base_lr,  # 学习率
    weight_decay=weight_decay,  # 权重衰减
    batch_size_per_gpu=train_batch_size_per_gpu),  # 每个GPU的批处理大小
                     paramwise_cfg=dict(bias_decay_mult=0.0,  # 偏置项衰减倍数
                                        norm_decay_mult=0.0,  # 归一化层衰减倍数
                                        custom_keys={  # 自定义键值对
                                            'backbone.text_model':  # 文本模型的键
                                            dict(lr_mult=0.01),  # 学习率倍数
                                            'logit_scale':  # 输出层缩放的键
                                            dict(weight_decay=0.0)  # 输出层权重衰减
                                        }),
                     constructor='YOLOWv5OptimizerConstructor')  # 构造函数为YOLOWv5OptimizerConstructor

.\YOLO-World\configs\pretrain\yolo_world_v2_m_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py

_base_ = ('../../third_party/mmyolo/configs/yolov8/'
          'yolov8_m_syncbn_fast_8xb16-500e_coco.py')
custom_imports = dict(imports=['yolo_world'],
                      allow_failed_imports=False)
# 定义基础配置文件路径
# 定义自定义导入模块和是否允许导入失败
# hyper-parameters
num_classes = 1203
num_training_classes = 80
max_epochs = 100  # Maximum training epochs
close_mosaic_epochs = 2
save_epoch_intervals = 2
text_channels = 512
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2]
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32]
base_lr = 2e-3
weight_decay = 0.05 / 2
train_batch_size_per_gpu = 16
# 定义超参数
# 定义类别数量、训练类别数量、最大训练轮数、关闭mosaic的轮数、保存模型的间隔轮数、文本通道数、neck嵌入通道数、neck头数、基础学习率、权重衰减、每GPU训练批次大小
# model settings
model = dict(
    type='YOLOWorldDetector',
    mm_neck=True,
    num_train_classes=num_training_classes,
    num_test_classes=num_classes,
    data_preprocessor=dict(type='YOLOWDetDataPreprocessor'),
    backbone=dict(
        _delete_=True,
        type='MultiModalYOLOBackbone',
        image_model={{_base_.model.backbone}},
        text_model=dict(
            type='HuggingCLIPLanguageBackbone',
            model_name='openai/clip-vit-base-patch32',
            frozen_modules=['all'])),
    neck=dict(type='YOLOWorldPAFPN',
              guide_channels=text_channels,
              embed_channels=neck_embed_channels,
              num_heads=neck_num_heads,
              block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv')),
    bbox_head=dict(type='YOLOWorldHead',
                   head_module=dict(type='YOLOWorldHeadModule',
                                    use_bn_head=True,
                                    embed_dims=text_channels,
                                    num_classes=num_training_classes)),
    train_cfg=dict(assigner=dict(num_classes=num_training_classes)))
# 定义模型设置
# 定义模型类型、是否使用neck、训练类别数量、测试类别数量、数据预处理器、骨干网络、neck、bbox头、训练配置
# dataset settings
text_transform = [
    dict(type='RandomLoadText',
         num_neg_samples=(num_classes, num_classes),
         max_num_samples=num_training_classes,
         padding_to_max=True,
         padding_value=''),
# 定义数据集设置
# 定义文本转换器,随机加载文本、负样本数量、最大样本数量、是否填充到最大长度、填充值
    # 创建一个字典对象,包含指定的键值对
    dict(type='mmdet.PackDetInputs',
         # 定义元数据的键名元组
         meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
                    'flip_direction', 'texts'))
# 定义训练管道,包含一系列数据处理和增强操作
train_pipeline = [
    *_base_.pre_transform,  # 使用基础预处理操作
    dict(type='MultiModalMosaic',  # 使用多模态马赛克操作
         img_scale=_base_.img_scale,  # 图像缩放比例
         pad_val=114.0,  # 填充值
         pre_transform=_base_.pre_transform),  # 预处理操作
    dict(
        type='YOLOv5RandomAffine',  # 使用YOLOv5随机仿射变换操作
        max_rotate_degree=0.0,  # 最大旋转角度
        max_shear_degree=0.0,  # 最大剪切角度
        scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),  # 缩放比例范围
        max_aspect_ratio=_base_.max_aspect_ratio,  # 最大长宽比
        border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),  # 边界
        border_val=(114, 114, 114)),  # 边界填充值
    *_base_.last_transform[:-1],  # 使用基础最后的转换操作
    *text_transform,  # 文本转换操作
]
# 定义第二阶段的训练管道
train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform]
# 定义obj365v1训练数据集
obj365v1_train_dataset = dict(
    type='MultiModalDataset',  # 多模态数据集类型
    dataset=dict(
        type='YOLOv5Objects365V1Dataset',  # 使用YOLOv5 Objects365V1数据集
        data_root='data/objects365v1/',  # 数据根目录
        ann_file='annotations/objects365_train.json',  # 标注文件
        data_prefix=dict(img='train/'),  # 数据前缀
        filter_cfg=dict(filter_empty_gt=False, min_size=32)),  # 过滤配置
    class_text_path='data/texts/obj365v1_class_texts.json',  # 类别文本路径
    pipeline=train_pipeline)  # 数据处理管道
# 定义mg训练数据集
mg_train_dataset = dict(type='YOLOv5MixedGroundingDataset',  # 使用YOLOv5混合定位数据集
                        data_root='data/mixed_grounding/',  # 数据根目录
                        ann_file='annotations/final_mixed_train_no_coco.json',  # 标注文件
                        data_prefix=dict(img='gqa/images/'),  # 数据前缀
                        filter_cfg=dict(filter_empty_gt=False, min_size=32),  # 过滤配置
                        pipeline=train_pipeline)  # 数据处理管道
# 定义flickr训练数据集
flickr_train_dataset = dict(
    type='YOLOv5MixedGroundingDataset',  # 使用YOLOv5混合定位数据集
    data_root='data/flickr/',  # 数据根目录
    ann_file='annotations/final_flickr_separateGT_train.json',  # 标注文件
    data_prefix=dict(img='full_images/'),  # 数据前缀
    filter_cfg=dict(filter_empty_gt=True, min_size=32),  # 过滤配置
    pipeline=train_pipeline)  # 数据处理管道
# 定义训练数据加载器,设置批量大小、数据集拼接方式、数据集列表和忽略的键
train_dataloader = dict(batch_size=train_batch_size_per_gpu,
                        collate_fn=dict(type='yolow_collate'),
                        dataset=dict(_delete_=True,
                                     type='ConcatDataset',
                                     datasets=[
                                         obj365v1_train_dataset,
                                         flickr_train_dataset, mg_train_dataset
                                     ],
                                     ignore_keys=['classes', 'palette']))
# 定义测试数据处理流程,包括加载文本和打包检测输入
test_pipeline = [
    *_base_.test_pipeline[:-1],
    dict(type='LoadText'),
    dict(type='mmdet.PackDetInputs',
         meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                    'scale_factor', 'pad_param', 'texts'))
]
# 定义 COCO 验证数据集,设置数据集类型、根目录、测试模式、注释文件、数据前缀和批量形状配置
coco_val_dataset = dict(
    _delete_=True,
    type='MultiModalDataset',
    dataset=dict(type='YOLOv5LVISV1Dataset',
                 data_root='data/coco/',
                 test_mode=True,
                 ann_file='lvis/lvis_v1_minival_inserted_image_name.json',
                 data_prefix=dict(img=''),
                 batch_shapes_cfg=None),
    class_text_path='data/texts/lvis_v1_class_texts.json',
    pipeline=test_pipeline)
# 定义验证数据加载器,设置数据集为 COCO 验证数据集
val_dataloader = dict(dataset=coco_val_dataset)
# 将测试数据加载器设置为验证数据加载器
test_dataloader = val_dataloader
# 定义验证评估器,设置评估类型为 LVIS 检测指标,注释文件为 LVIS 最小验证集的插入图像名称文件
val_evaluator = dict(type='mmdet.LVISMetric',
                     ann_file='data/coco/lvis/lvis_v1_minival_inserted_image_name.json',
                     metric='bbox')
# 将测试评估器设置为验证评估器
test_evaluator = val_evaluator
# 训练设置
# 默认钩子,设置参数调度器和检查点保存间隔
default_hooks = dict(param_scheduler=dict(max_epochs=max_epochs),
                     checkpoint=dict(interval=save_epoch_intervals,
                                     rule='greater'))
# 自定义钩子,设置指数动量 EMA 钩子的参数
custom_hooks = [
    dict(type='EMAHook',
         ema_type='ExpMomentumEMA',
         momentum=0.0001,
         update_buffers=True,
         strict_load=False,
         priority=49),
    # 创建一个字典,包含PipelineSwitchHook的相关参数
    dict(type='mmdet.PipelineSwitchHook', 
         # 设置切换pipeline的时机为最大训练轮数减去关闭mosaic的轮数
         switch_epoch=max_epochs - close_mosaic_epochs, 
         # 设置切换的pipeline为train_pipeline_stage2
         switch_pipeline=train_pipeline_stage2)
# 创建一个字典,包含训练配置参数
train_cfg = dict(max_epochs=max_epochs,  # 最大训练轮数
                 val_interval=10,  # 验证间隔
                 dynamic_intervals=[((max_epochs - close_mosaic_epochs),  # 动态间隔
                                     _base_.val_interval_stage2)])  # 验证阶段2的间隔设置
# 定义优化器包装器的配置参数
optim_wrapper = dict(optimizer=dict(
    _delete_=True,  # 删除原有的优化器配置
    type='AdamW',  # 优化器类型为AdamW
    lr=base_lr,  # 学习率
    weight_decay=weight_decay,  # 权重衰减
    batch_size_per_gpu=train_batch_size_per_gpu),  # 每个GPU的批处理大小
                     paramwise_cfg=dict(bias_decay_mult=0.0,  # 偏置项衰减倍数
                                        norm_decay_mult=0.0,  # 归一化层衰减倍数
                                        custom_keys={  # 自定义键值对
                                            'backbone.text_model':  # 文本模型的键
                                            dict(lr_mult=0.01),  # 学习率倍数
                                            'logit_scale':  # 输出层缩放的键
                                            dict(weight_decay=0.0)  # 输出层权重衰减
                                        }),
                     constructor='YOLOWv5OptimizerConstructor')  # 构造函数为YOLOWv5OptimizerConstructor

yolo-world 源码解析(二)(3)https://developer.aliyun.com/article/1483843

相关文章
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
77 2
|
3天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
3天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
3天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
26天前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
54 12
|
22天前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
4天前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
81 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
66 0
|
2月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
70 0

热门文章

最新文章

推荐镜像

更多