yolo-world 源码解析(五)(4)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: yolo-world 源码解析(五)

yolo-world 源码解析(五)(3)https://developer.aliyun.com/article/1483892

.\YOLO-World\yolo_world\models\dense_heads\yolo_world_seg_head.py

# 版权声明
# 导入数学库
import math
# 导入类型提示相关库
from typing import List, Optional, Tuple, Union, Sequence
# 导入 PyTorch 库
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn.modules.batchnorm import _BatchNorm
# 导入 mmcv 库中的模块
from mmcv.cnn import ConvModule
from mmengine.config import ConfigDict
from mmengine.dist import get_dist_info
from mmengine.structures import InstanceData
from mmdet.structures import SampleList
from mmdet.utils import (ConfigType, OptConfigType, OptInstanceList,
                         OptMultiConfig, InstanceList)
from mmdet.models.utils import multi_apply, unpack_gt_instances
from mmyolo.models.dense_heads import YOLOv8HeadModule
from mmyolo.models.utils import gt_instances_preprocess
from mmyolo.registry import MODELS, TASK_UTILS
from mmyolo.models.dense_heads.yolov5_ins_head import (
    ProtoModule, YOLOv5InsHead
)
# 导入自定义的模块
from .yolo_world_head import ContrastiveHead, BNContrastiveHead
# 注册 YOLOWorldSegHeadModule 类为模型
@MODELS.register_module()
class YOLOWorldSegHeadModule(YOLOv8HeadModule):
    # 初始化方法
    def __init__(self,
                 *args,
                 embed_dims: int,
                 proto_channels: int,
                 mask_channels: int,
                 freeze_bbox: bool = False,
                 use_bn_head: bool = False,
                 **kwargs) -> None:
        # 初始化属性
        self.freeze_bbox = freeze_bbox
        self.embed_dims = embed_dims
        self.proto_channels = proto_channels
        self.mask_channels = mask_channels
        self.use_bn_head = use_bn_head
        # 调用父类的初始化方法
        super().__init__(*args, **kwargs)
    def init_weights(self, prior_prob=0.01):
        """初始化PPYOLOE头部的权重和偏置。"""
        # 调用父类的初始化权重方法
        super().init_weights()
        # 遍历分类预测、分类对比和特征图步长,分别初始化偏置
        for cls_pred, cls_contrast, stride in zip(self.cls_preds,
                                                  self.cls_contrasts,
                                                  self.featmap_strides):
            cls_pred[-1].bias.data[:] = 0.0  # 重置偏置
            # 如果分类对比具有偏置属性,则初始化为特定值
            if hasattr(cls_contrast, 'bias'):
                nn.init.constant_(
                    cls_contrast.bias.data,
                    math.log(5 / self.num_classes / (640 / stride)**2))
    def head_norm_eval(self):
        # 遍历分类预测模块,将所有批归一化层设置为评估模式
        for m in self.cls_preds:
            for q in m.modules():
                if isinstance(q, _BatchNorm):
                    q.eval()
        # 遍历回归预测模块,将所有批归一化层设置为评估模式
        for m in self.reg_preds:
            for q in m.modules():
                if isinstance(q, _BatchNorm):
                    q.eval()
    def train(self, mode: bool = True):
        """将模型转换为训练模式,同时保持归一化层冻结。"""
        # 调用父类的训练方法
        super().train(mode)
        # 如果冻结边界框,则调用头部归一化评估方法
        if self.freeze_bbox:
            self.head_norm_eval()
    def forward(self, img_feats: Tuple[Tensor],
                txt_feats: Tensor) -> Tuple[List]:
        """从上游网络前向传播特征。"""
        # 断言图像特征的长度等于级别数
        assert len(img_feats) == self.num_levels
        # 将文本特征复制多份以匹配级别数
        txt_feats = [txt_feats for _ in range(self.num_levels)]
        # 生成掩码原型
        mask_protos = self.proto_pred(img_feats[0])
        # 多路并行处理,获取分类logit、边界框预测、边界框距离预测和系数预测
        cls_logit, bbox_preds, bbox_dist_preds, coeff_preds = multi_apply(
            self.forward_single, img_feats, txt_feats, self.cls_preds,
            self.reg_preds, self.cls_contrasts, self.seg_preds)
        # 如果处于训练模式,则返回所有预测结果和掩码原型
        if self.training:
            return cls_logit, bbox_preds, bbox_dist_preds, coeff_preds, mask_protos
        # 否则,返回分类logit、边界框预测、系数预测和掩码原型
        else:
            return cls_logit, bbox_preds, None, coeff_preds, mask_protos
    def forward_single(self, img_feat: Tensor, txt_feat: Tensor,
                       cls_pred: nn.ModuleList, reg_pred: nn.ModuleList,
                       cls_contrast: nn.ModuleList,
                       seg_pred: nn.ModuleList) -> Tuple:
        """Forward feature of a single scale level."""
        # 获取输入特征的形状信息
        b, _, h, w = img_feat.shape
        # 使用分类预测模型对图像特征进行预测
        cls_embed = cls_pred(img_feat)
        # 使用对比损失模型对分类嵌入进行预测
        cls_logit = cls_contrast(cls_embed, txt_feat)
        # 使用回归预测模型对图像特征进行预测
        bbox_dist_preds = reg_pred(img_feat)
        # 使用分割预测模型对图像特征进行预测
        coeff_pred = seg_pred(img_feat)
        # 如果回归最大值大于1
        if self.reg_max > 1:
            # 重塑回归预测结果的形状
            bbox_dist_preds = bbox_dist_preds.reshape(
                [-1, 4, self.reg_max, h * w]).permute(0, 3, 1, 2)
            # TODO: get_flops脚本无法处理矩阵乘法的情况,稍后需要修复
            # 计算边界框预测结果
            bbox_preds = bbox_dist_preds.softmax(3).matmul(
                self.proj.view([-1, 1])).squeeze(-1)
            bbox_preds = bbox_preds.transpose(1, 2).reshape(b, -1, h, w)
        else:
            bbox_preds = bbox_dist_preds
        # 如果处于训练模式
        if self.training:
            return cls_logit, bbox_preds, bbox_dist_preds, coeff_pred
        else:
            return cls_logit, bbox_preds, None, coeff_pred
# 注册 YOLO World Segmentation Head 类到 MODELS 模块
@MODELS.register_module()
class YOLOWorldSegHead(YOLOv5InsHead):
    # 特殊初始化函数,用于处理不同算法的特殊初始化过程
    def special_init(self):
        """Since YOLO series algorithms will inherit from YOLOv5Head, but
        different algorithms have special initialization process.
        The special_init function is designed to deal with this situation.
        """
        # 如果存在训练配置,则构建分配器
        if self.train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg.assigner)
            # 添加常用属性以减少计算
            self.featmap_sizes_train = None
            self.num_level_priors = None
            self.flatten_priors_train = None
            self.stride_tensor = None
    """YOLO World head."""
    # 损失函数,计算前向传播和检测头特征的损失
    def loss(self, img_feats: Tuple[Tensor], txt_feats: Tensor,
             batch_data_samples: Union[list, dict]) -> dict:
        """Perform forward propagation and loss calculation of the detection
        head on the features of the upstream network."""
        # 执行前向传播并获取输出
        outs = self(img_feats, txt_feats)
        # 快速版本
        loss_inputs = outs + (batch_data_samples['bboxes_labels'],
                              batch_data_samples['masks'],
                              batch_data_samples['img_metas'])
        # 计算损失
        losses = self.loss_by_feat(*loss_inputs)
        return losses
    # 损失和预测函数
    def loss_and_predict(
        self,
        img_feats: Tuple[Tensor],
        txt_feats: Tensor,
        batch_data_samples: SampleList,
        proposal_cfg: Optional[ConfigDict] = None
    def forward(self, img_feats: Tuple[Tensor],
                txt_feats: Tensor) -> Tuple[List]:
        """Forward features from the upstream network."""
        # 从上游网络中前向传播特征
        return self.head_module(img_feats, txt_feats)
    def predict(self,
                img_feats: Tuple[Tensor],
                txt_feats: Tensor,
                batch_data_samples: SampleList,
                rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the detection head and predict
        detection results on the features of the upstream network.
        """
        # 从检测头部进行前向传播,并在上游网络的特征上预测检测结果
        # 获取批量数据样本的元信息
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]
        # 获取模型输出
        outs = self(img_feats, txt_feats)
        # 根据模型输出进行预测
        predictions = self.predict_by_feat(*outs,
                                           batch_img_metas=batch_img_metas,
                                           rescale=rescale)
        return predictions
    def forward(self, img_feats: Tuple[Tensor],
                txt_feats: Tensor) -> Tuple[dict, InstanceList]:
        """Perform forward propagation of the head, then calculate loss and
        predictions from the features and data samples.
        """
        # 解包批量数据样本
        outputs = unpack_gt_instances(batch_data_samples)
        (batch_gt_instances, batch_gt_instances_ignore,
         batch_img_metas) = outputs
        # 获取模型输出
        outs = self(img_feats, txt_feats)
        # 构建损失函数输入
        loss_inputs = outs + (batch_gt_instances, batch_img_metas,
                              batch_gt_instances_ignore)
        # 计算损失
        losses = self.loss_by_feat(*loss_inputs)
        # 根据模型输出进行预测
        predictions = self.predict_by_feat(*outs,
                                           batch_img_metas=batch_img_metas,
                                           cfg=proposal_cfg)
        return losses, predictions
    # 定义一个测试函数,用于测试时进行数据增强
    def aug_test(self,
                 aug_batch_feats,
                 aug_batch_img_metas,
                 rescale=False,
                 with_ori_nms=False,
                 **kwargs):
        """Test function with test time augmentation."""
        # 抛出未实现错误,提示该函数还未被实现
        raise NotImplementedError('aug_test is not implemented yet.')

.\YOLO-World\yolo_world\models\dense_heads\__init__.py

# 导入 YOLOWorldHead 和 YOLOWorldHeadModule 类
from .yolo_world_head import YOLOWorldHead, YOLOWorldHeadModule
# 导入 YOLOWorldSegHead 和 YOLOWorldSegHeadModule 类
from .yolo_world_seg_head import YOLOWorldSegHead, YOLOWorldSegHeadModule
# 定义 __all__ 列表,包含需要导出的类名
__all__ = [
    'YOLOWorldHead', 'YOLOWorldHeadModule', 'YOLOWorldSegHead',
    'YOLOWorldSegHeadModule'
]

.\YOLO-World\yolo_world\models\detectors\yolo_world.py

# 导入所需的模块和类
from typing import List, Tuple, Union
from torch import Tensor
from mmdet.structures import OptSampleList, SampleList
from mmyolo.models.detectors import YOLODetector
from mmyolo.registry import MODELS
# 注册YOLOWorldDetector类到MODELS模块
@MODELS.register_module()
class YOLOWorldDetector(YOLODetector):
    """Implementation of YOLOW Series"""
    # 初始化函数,接受一些参数
    def __init__(self,
                 *args,
                 mm_neck: bool = False,
                 num_train_classes=80,
                 num_test_classes=80,
                 **kwargs) -> None:
        # 初始化类的属性
        self.mm_neck = mm_neck
        self.num_train_classes = num_train_classes
        self.num_test_classes = num_test_classes
        # 调用父类的初始化函数
        super().__init__(*args, **kwargs)
    # 计算损失函数的方法,接受输入和数据样本
    def loss(self, batch_inputs: Tensor,
             batch_data_samples: SampleList) -> Union[dict, list]:
        """Calculate losses from a batch of inputs and data samples."""
        # 设置bbox_head的类别数为训练类别数
        self.bbox_head.num_classes = self.num_train_classes
        # 提取图像特征和文本特征
        img_feats, txt_feats = self.extract_feat(batch_inputs,
                                                 batch_data_samples)
        # 计算损失
        losses = self.bbox_head.loss(img_feats, txt_feats, batch_data_samples)
        # 返回损失
        return losses
    # 预测模型的方法,接受批量输入和数据样本,返回带有后处理的结果列表
    def predict(self,
                batch_inputs: Tensor,
                batch_data_samples: SampleList,
                rescale: bool = True) -> SampleList:
        """Predict results from a batch of inputs and data samples with post-
        processing.
        """
        # 提取图像特征和文本特征
        img_feats, txt_feats = self.extract_feat(batch_inputs,
                                                 batch_data_samples)
        # 设置边界框头部的类别数为文本特征的第一个维度大小
        self.bbox_head.num_classes = txt_feats[0].shape[0]
        
        # 使用图像特征、文本特征和数据样本进行预测,返回结果列表
        results_list = self.bbox_head.predict(img_feats,
                                              txt_feats,
                                              batch_data_samples,
                                              rescale=rescale)
        # 将预测结果添加到数据样本中
        batch_data_samples = self.add_pred_to_datasample(
            batch_data_samples, results_list)
        
        # 返回更新后的数据样本
        return batch_data_samples
    # 网络前向传播过程,通常包括骨干网络、颈部和头部的前向传播,不包含任何后处理
    def _forward(
            self,
            batch_inputs: Tensor,
            batch_data_samples: OptSampleList = None) -> Tuple[List[Tensor]]:
        """Network forward process. Usually includes backbone, neck and head
        forward without any post-processing.
        """
        
        # 提取图像特征和文本特征
        img_feats, txt_feats = self.extract_feat(batch_inputs,
                                                 batch_data_samples)
        
        # 进行边界框头部的前向传播,返回结果
        results = self.bbox_head.forward(img_feats, txt_feats)
        
        # 返回结果
        return results
    # 定义一个方法用于提取特征,接受两个输入参数:batch_inputs(张量)和batch_data_samples(样本列表),返回一个元组
    def extract_feat(
            self, batch_inputs: Tensor,
            batch_data_samples: SampleList) -> Tuple[Tuple[Tensor], Tensor]:
        """Extract features."""
        # 如果batch_data_samples是字典类型,则获取其中的'texts'键对应的值
        if isinstance(batch_data_samples, dict):
            texts = batch_data_samples['texts']
        # 如果batch_data_samples是列表类型,则遍历其中的数据样本,获取每个数据样本的文本信息
        elif isinstance(batch_data_samples, list):
            texts = [data_sample.texts for data_sample in batch_data_samples]
        # 如果batch_data_samples既不是字典类型也不是列表类型,则抛出类型错误异常
        else:
            raise TypeError('batch_data_samples should be dict or list.')
        # 调用backbone模型提取图像和文本特征
        img_feats, txt_feats = self.backbone(batch_inputs, texts)
        # 如果模型包含neck部分
        if self.with_neck:
            # 如果使用多模态neck
            if self.mm_neck:
                # 将图像特征和文本特征输入到neck模块中进行处理
                img_feats = self.neck(img_feats, txt_feats)
            else:
                # 只将图像特征输入到neck模块中进行处理
                img_feats = self.neck(img_feats)
        # 返回提取的图像特征和文本特征
        return img_feats, txt_feats
相关文章
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
77 2
|
3天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
3天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
3天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
27天前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
54 12
|
23天前
|
PyTorch Shell API
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
|
4天前
|
安全 搜索推荐 数据挖掘
陪玩系统源码开发流程解析,成品陪玩系统源码的优点
我们自主开发的多客陪玩系统源码,整合了市面上主流陪玩APP功能,支持二次开发。该系统适用于线上游戏陪玩、语音视频聊天、心理咨询等场景,提供用户注册管理、陪玩者资料库、预约匹配、实时通讯、支付结算、安全隐私保护、客户服务及数据分析等功能,打造综合性社交平台。随着互联网技术发展,陪玩系统正成为游戏爱好者的新宠,改变游戏体验并带来新的商业模式。
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
81 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
67 0
|
2月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
71 0

推荐镜像

更多