Hive面试题整理

简介: Hive表关联查询,如何解决数据倾斜的问题、Hive的HSQL转换为MapReduce的过程、Hive底层与数据库交互原理、Hive的两张表关联,使用MapReduce怎么实现、请谈一下Hive的特点,Hive和RDBMS有什么异同、请说明hive中 Sort By,Order By,Cluster By,Distrbute By各代表什么意思、写出hive中split、coalesce及collect_list函数的用法(可举例)、Hive有哪些方式保存元数据,各有哪些特点、Hive内部表如何解决呢。

1、Hive表关联查询,如何解决数据倾斜的问题?(☆☆☆☆☆)

1)倾斜原因:map输出数据按key Hash的分配到reduce中,由于key分布不均匀、业务数据本身的特、建表时考虑不周、等原因造成的reduce 上的数据量差异过大。

(1)key分布不均匀;

(2)业务数据本身的特性;

(3)建表时考虑不周;

(4)某些SQL语句本身就有数据倾斜;

如何避免:对于key为空产生的数据倾斜,可以对其赋予一个随机值。


  2)解决方案

(1)参数调节:

  hive.map.aggr = true

  hive.groupby.skewindata=true


  有数据倾斜的时候进行负载均衡,当选项设定位true,生成的查询计划会有两个MR Job。第一个MR Job中,Map的输出结果集合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MR Job再根据预处理的数据结果按照Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个Reduce中),最后完成最终的聚合操作。

(2)SQL 语句调节:

① 选用join key分布最均匀的表作为驱动表。做好列裁剪和filter操作,以达到两表做join 的时候,数据量相对变小的效果。

② 大小表Join:

  使用map join让小的维度表(1000 条以下的记录条数)先进内存。在map端完成reduce。

③ 大表Join大表:

   

把空值的key变成一个字符串加上随机数,把倾斜的数据分到不同的reduce上,由于null 值关联不上,处理后并不影响最终结果。


  ④ count distinct大量相同特殊值:

  count distinct 时,将值为空的情况单独处理,如果是计算count distinct,可以不用处理,直接过滤,在最后结果中加1。如果还有其他计算,需要进行group by,可以先将值为空的记录单独处理,再和其他计算结果进行union。


2、Hive的HSQL转换为MapReduce的过程?(☆☆☆☆☆)


  HiveSQL ->AST(抽象语法树) -> QB(查询块) ->OperatorTree(操作树)->优化后的操作树->mapreduce任务树->优化后的mapreduce任务树

微信图片_20220426205336.png

微信图片_20220426205341.png


  过程描述如下:

   

SQL Parser:Antlr定义SQL的语法规则,完成SQL词法,语法解析,将SQL转化为抽象语法树AST Tree;

  Semantic Analyzer:遍历AST Tree,抽象出查询的基本组成单元QueryBlock;

   

Logical plan:遍历QueryBlock,翻译为执行操作树OperatorTree;

   

Logical plan optimizer: 逻辑层优化器进行OperatorTree变换,合并不必要的

ReduceSinkOperator,减少shuffle数据量;

   

Physical plan:遍历OperatorTree,翻译为MapReduce任务;

   

Logical plan optimizer:物理层优化器进行MapReduce任务的变换,生成最终的执行计划。


3、Hive底层与数据库交互原理?(☆☆☆☆☆)

由于Hive的元数据可能要面临不断地更新、修改和读取操作,所以它显然不适合使用Hadoop文件系统进行存储。目前Hive将元数据存储在RDBMS中,比如存储在MySQL、Derby中。元数据信息包括:存在的表、表的列、权限和更多的其他信息。

微信图片_20220426205345.png


4、Hive的两张表关联,使用MapReduce怎么实现?(☆☆☆☆☆)

如果其中有一张表为小表,直接使用map端join的方式(map端加载小表)进行聚合。

如果两张都是大表,那么采用联合key,联合key的第一个组成部分是join on中的公共字段,第二部分是一个flag,0代表表A,1代表表B,由此让Reduce区分客户信息和订单信息;在Mapper中同时处理两张表的信息,将join on公共字段相同的数据划分到同一个分区中,进而传递到一个Reduce中,然后在Reduce中实现聚合。


5、请谈一下Hive的特点,Hive和RDBMS有什么异同?


  hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析,但是Hive不支持实时查询。

Hive与关系型数据库的区别:

微信图片_20220426205348.png


6、请说明hive中 Sort By,Order By,Cluster By,Distrbute By各代表什么意思?

order by:会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)。只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。

sort by:不是全局排序,其在数据进入reducer前完成排序。

distribute by:按照指定的字段对数据进行划分输出到不同的reduce中。


  cluster by:除了具有 distribute by 的功能外还兼具 sort by 的功能。


7、写出hive中split、coalesce及collect_list函数的用法(可举例)?

split将字符串转化为数组,即:split('a,b,c,d' , ',') ==> ["a","b","c","d"]。


  coalesce(T v1, T v2, …) 返回参数中的第一个非空值;如果所有值都为 NULL,那么返回NULL。


  collect_list列出该字段所有的值,不去重 => select collect_list(id) from table。


8、Hive有哪些方式保存元数据,各有哪些特点?


  Hive支持三种不同的元存储服务器,分别为:内嵌式元存储服务器、本地元存储服务器、远程元存储服务器,每种存储方式使用不同的配置参数。

内嵌式元存储主要用于单元测试,在该模式下每次只有一个进程可以连接到元存储,Derby是内嵌式元存储的默认数据库。

在本地模式下,每个Hive客户端都会打开到数据存储的连接并在该连接上请求SQL查询。


  在远程模式下,所有的Hive客户端都将打开一个到元数据服务器的连接,该服务器依次查询元数据,元数据服务器和客户端之间使用Thrift协议通信。


9、Hive内部表和外部表的区别?


  创建表时:创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。

删除表时:在删除表的时候,内部表的元数据和数据会被一起删除, 而外部表只删除元数据,不删除数据。这样外部表相对来说更加安全些,数据组织也更加灵活,方便共享源数据。


10、Hive 中的压缩格式TextFile、SequenceFile、RCfile 、ORCfile各有什么区别?

1、TextFile

默认格式,存储方式为行存储,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,压缩后的文件不支持split,Hive不会对数据进行切分,从而无法对数据进行并行操作。并且在反序列化过程中,必须逐个字符判断是不是分隔符和行结束符,因此反序列化开销会比SequenceFile高几十倍。


2、SequenceFile

SequenceFile是Hadoop API提供的一种二进制文件支持,存储方式为行存储,其具有使用方便、可分割、可压缩的特点

SequenceFile支持三种压缩选择:NONE,RECORD,BLOCK。Record压缩率低,一般建议使用BLOCK压缩


  优势是文件和hadoop api中的MapFile是相互兼容的


3、RCFile


  存储方式:数据按行分块,每块按列存储。结合了行存储和列存储的优点:

   

首先,RCFile 保证同一行的数据位于同一节点,因此元组重构的开销很低;

  其次,像列存储一样,RCFile 能够利用列维度的数据压缩,并且能跳过不必要的列读取;

4、ORCFile

存储方式:数据按行分块 每块按照列存储。


  压缩快、快速列存取。

效率比rcfile高,是rcfile的改良版本。

总结:相比TEXTFILE和SEQUENCEFILE,RCFILE由于列式存储方式,数据加载时性能消耗较大,但是具有较好的压缩比和查询响应

数据仓库的特点是一次写入、多次读取,因此,整体来看,RCFILE相比其余两种格式具有较明显的优势


11、所有的Hive任务都会有MapReduce的执行吗?

不是,从Hive0.10.0版本开始,对于简单的不需要聚合的类似SELECT from

LIMIT n语句,不需要起MapReduce job,直接通过Fetch task获取数据。


12、Hive的函数:UDF、UDAF、UDTF的区别?

UDF:单行进入,单行输出

UDAF:多行进入,单行输出


UDTF:单行输入,多行输出


13、说说对Hive桶表的理解?


  桶表是对数据进行哈希取值,然后放到不同文件中存储。

数据加载到桶表时,会对字段取hash值,然后与桶的数量取模。把数据放到对应的文件中。物理上,每个桶就是表(或分区)目录里的一个文件,一个作业产生的桶(输出文件)和reduce任务个数相同。

桶表专门用于抽样查询,是很专业性的,不是日常用来存储数据的表,需要抽样查询时,才创建和使用桶表。

目录
相关文章
|
7月前
|
SQL 存储 分布式计算
Hive数据仓库设计与优化策略:面试经验与必备知识点解析
本文深入探讨了Hive数据仓库设计原则(分区、分桶、存储格式选择)与优化策略(SQL优化、内置优化器、统计信息、配置参数调整),并分享了面试经验及常见问题,如Hive与RDBMS的区别、实际项目应用和与其他组件的集成。通过代码样例,帮助读者掌握Hive核心技术,为面试做好充分准备。
624 0
|
SQL 分布式计算 Hadoop
Hadoop Hive面试连环炮 1
Hadoop Hive面试连环炮
72 0
|
7月前
|
SQL 存储 分布式计算
Hive精选10道面试题
Hive精选10道面试题
305 3
Hive精选10道面试题
|
7月前
|
SQL Java HIVE
Hive高频面试题之UDTF实现多行输出
Hive高频面试题之UDTF实现多行输出
56 0
|
7月前
|
SQL 存储 大数据
大数据开发岗面试30天冲刺 - 日积月累,每日五题【Day01】——Hive1
大数据开发岗面试30天冲刺 - 日积月累,每日五题【Day01】——Hive1
84 0
|
7月前
|
SQL 分布式计算 大数据
大数据面试题百日更新_Hive专题(Day12)
大数据面试题百日更新_Hive专题(Day12)
48 0
|
SQL 分布式计算 Hadoop
Hadoop Hive面试连环炮 2
Hadoop Hive面试连环炮
55 0
|
SQL BI OLAP
【面试必问】窗口函数全解-HIVE
【面试必问】窗口函数全解-HIVE
|
SQL 分布式计算 大数据
大数据面试题:Hive count(distinct)有几个reduce,海量数据会有什么问题
count(distinct)只有1个reduce。 为什么只有一个reducer呢,因为使用了distinct和count(full aggreates),这两个函数产生的mr作业只会产生一个reducer,而且哪怕显式指定set mapred.reduce.tasks=100000也是没用的。 当使用count(distinct)处理海量数据(比如达到一亿以上)时,会使得运行速度变得很慢,熟悉mr原理的就明白这时sql跑的慢的原因,因为出现了很严重的数据倾斜。
|
SQL 移动开发 并行计算
不需要编写代码,也能成为Hive SQL面试高手?ChatGPT告诉你...
当你面对 Hive SQL 面试时,不仅需要掌握 SQL 语言的基本知识,还需要熟练掌握 Hive SQL 的一些高级特性,比如窗口函数、分区等等。对于初学者而言,写出高效的 Hive SQL 代码往往是一件困难的事情,而这恰恰是面试官最为看重的。但是,你不必担心!现在,有一种神奇的工具——ChatGPT,可以帮助你快速生成 Hive SQL 代码,解决你在面试中遇到的各种难题。本文将会介绍如何使用 ChatGPT 生成 Hive SQL 代码,让你在面试中轻松成为 Hive SQL 面试高手,无需编写代码也能毫不费力地完成面试题。 让我们一起来看看吧!