ICLR2021对比学习(Contrastive Learning)NLP领域论文进展梳理(二)

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: ICLR2021对比学习(Contrastive Learning)NLP领域论文进展梳理(二)

Towards Robust and Efficient Contrastive Textual Representation Learning


任务:语言模型预训练


5png.png


本文分析了目前将对比学习用于文本表示学习存在的问题(2.2节),包括:


对比学习中,如果采用KL散度作为训练目标,训练过程会不稳定;


对比学习要求一个较大的负样本集合,效率低。


对于第一个问题,作者添加了一个Wasserstein约束,来增强其训练时的稳定性;对于第二个问题,作者提出了只采样最近的K个负样本,称为Active Negative-sample selection(和NIPS那篇:Hard Negatives Mixing比较类似)。


Self-supervised Contrastive Zero to Few-shot Learning from Small, Long-tailed Text data


任务:文本匹配;多标签文本分类


6.png


本文主要尝试解决多标签文本分类问题,特别是其存在的长尾标签问题(即当数据较少时,类别分布往往不均匀,会存在大量很多只出现了一两次的标签,同时少量类别频繁出现)。


本文主要将多标签分类任务建模成类似文本匹配的形式。将采样不同的正负标签,同时也会从句子中采样文本片段,构成伪标签。这四种形式的标签(正标签、负标签、正伪标签、负伪标签)编码后,和句子编码拼接,经过一个匹配层,通过二分类交叉熵损失(BCE),或NCE损失(将正例区别于负例)训练匹配模型。


Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval


任务:稠密文本检索


7.png


本文研究文本检索领域,不同于传统的利用词级别进行检索(稀疏检索),本文通过训练文本表示进行文本检索(称为Dence Retrieval,DR)。DR包含两个阶段:


预训练一个模型,将文本编码成一个向量,训练目标是使得similar pairs具有最大的相似度分数;


通过训练好的编码模型,将文本编码、索引,根据query的相似度执行检索。


本文主要关注于第一阶段,即如何训练一个好的表示。本文从一个假设出发:负样本采样方法是限制DR性能的瓶颈。本文的贡献:


提出了一种更好的负采样方法,用于采样优质的dissimilar pairs;


本文提出的效果能让训练更快收敛;


本文提出的方法相比基于BERT的方法提升了100倍效率,同时达到了相似的准确率。


本文所提出的负采样方法是一种不断迭代的形式,将ANN索引的结果用于负样本采样,随后进一步训练模型;模型训练完之后,用于更新文档表示以及索引。




相关文章
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)的进展与挑战
【6月更文挑战第13天】自然语言处理(NLP)在深度学习推动下取得显著进展,包括循环神经网络、词嵌入技术及预训练模型(如BERT、GPT)的应用,突破了文本分类、问答系统等任务。然而,数据稀疏性、语言复杂性和模型可解释性仍是挑战。未来,NLP有望实现更高效、准确和可解释的技术,需关注数据隐私和伦理问题。
90 10
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--6 提分方案
在讯飞英文学术论文分类挑战赛中的提分技巧和实现方法,包括数据增强、投票融合、伪标签等策略,以及加快模型训练的技巧,如混合精度训练和使用AdamW优化器等。
40 0
|
3月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
39 0
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
48 0
|
3月前
|
数据采集 自然语言处理 机器学习/深度学习
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–3 TextCNN Fasttext 方案
讯飞英文学术论文分类挑战赛中使用TextCNN和FastText模型进行文本分类的方案,包括数据预处理、模型训练和对抗训练等步骤,并分享了模型调优的经验。
35 0
|
3月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--2 数据分析
讯飞英文学术论文分类挑战赛数据集的分析,包括数据加载、缺失值检查、标签分布、文本长度统计等内容,并总结了数据的基本情况。
22 0
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--1 赛后总结与分析
参与讯飞英文学术论文分类挑战赛的经验,包括使用的多种模型和技术,如TextCNN、FastText、LightGBM和BERT,以及提分策略和遇到的问题。
39 0
|
5月前
|
机器学习/深度学习 自然语言处理 算法
深度学习在自然语言处理中的进展与应用
本文探讨了深度学习技术在自然语言处理领域的最新进展和应用。通过分析深度学习模型的发展历程及其在文本分类、情感分析、语义理解等任务中的成功案例,展示了这些技术如何推动了自然语言处理的前沿应用。同时,文章还讨论了当前技术面临的挑战以及未来发展的趋势。
119 11
|
5月前
|
自然语言处理
【自然语言处理NLP】DPCNN模型论文精读笔记
【自然语言处理NLP】DPCNN模型论文精读笔记
70 2
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在自然语言处理中的应用进展
本文旨在深入探讨深度学习技术在自然语言处理领域的应用与进展。通过分析最新的研究数据和案例,本文揭示了深度学习模型如何推动语言理解、生成和翻译的边界。数据显示,与传统方法相比,深度学习模型在多个NLP任务中展现出更高的准确率和效率。本文将详细讨论这些模型的工作原理,它们的优势与挑战,以及未来可能的发展方向。
82 0

热门文章

最新文章