【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。

1 相关信息

2 引言

(1)机器学习方法在我们的任务中,没有重点研究,仅写出一个简单的baseline。该部分由队友博远实现,比赛最后的模型融合的部分,使用到,单个LGB模型,没有调参,5折交叉验证,线上都能达到0.79+的成绩,还有很多可提分点,如果时间允许,有很多提分技巧

  • XGB模型
  • LR模型
  • 多模型融合EnsembleVoteClassifier
  • 多模型融合StackingClassifier
  • 加入伪标签训练
  • 数据增强
    (2)实现步骤
  • 数据预处理
  • K折划分数据
  • TF-IDF提取特征,将单词转为数值矩阵
  • 训练模型
  • 每折预测一遍结果求和,最后取K折的结果的平均作为预测矩阵
  • np.argmax取得预测值
  • 生成提交文件

3 实现

Github源码下载

import pandas as pd
from nltk.stem import WordNetLemmatizer
import re
import nltk
from spacy.lang.en.stop_words import STOP_WORDS
import numpy as np
import lightgbm as lgb
from sklearn import metrics
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.model_selection import KFold, StratifiedKFold

from sklearn.model_selection import train_test_split

clean_tag =True
if clean_tag ==True:
    en_stop = set(nltk.corpus.stopwords.words('english'))
    custom_stop_words = [
        'doi', 'preprint', 'copyright', 'peer', 'reviewed', 'org', 'https', 'et', 'al', 'author', 'figure',
        'rights', 'reserved', 'permission', 'used', 'using', 'biorxiv', 'medrxiv', 'license', 'fig', 'fig.',
        'al.', 'elsevier', 'pmc', 'czi', 'www'
    ]
    for word in custom_stop_words:
        en_stop.add(word)

    def preprocess_text(document):
        stemmer = WordNetLemmatizer()

        document = str(document)
        document = document.replace("\n", ' ')
        document = document.replace("/'", '')
        # Remove  all the special characters
        document = re.sub(r'\W', ' ', document)

        # 删除所有单个字符
        document = re.sub(r'\s+[a-zA-Z]\s+', ' ', document)

        # 从开头删除单个字符
        document = re.sub(r'\^[a-zA-Z]\s+', ' ', document)

        # 用单个空格替换多个空格
        document = re.sub(r'\s+', ' ', document, flags=re.I)

        # 数字泛化:,所有大于9的数字都被hashs替换了。即成为# #,123变成# # #或15.80€变成# #,# #€。
        document = re.sub('[0-9]{5,}', '#####', document)
        document = re.sub('[0-9]{4}', '####', document)
        document = re.sub('[0-9]{3}', '###', document)
        document = re.sub('[0-9]{2}', '##', document)
        # 转换为小写
        document = document.lower()
        # 词形还原
        tokens = document.split()
        tokens = [stemmer.lemmatize(word) for word in tokens]
        # 去停用词
        tokens = [word for word in tokens if word not in en_stop]
        # 去低频词
        tokens = [word for word in tokens if len(word) > 3]
        preprocessed_text = ' '.join(tokens)

        return preprocessed_text

    train = pd.read_csv("train/train_stop.csv", sep="\t")
    test = pd.read_csv("test/test.csv", sep="\t")
    sub = pd.read_csv("sample_submit.csv")

    train["text"] = train["title"] + " " + train["abstract"]
    # for i in range(len(train["text"])):
    #     train["text"][i] = preprocess_text(train["text"][i])
    train["text"] = train["text"].progress_apply(lambda x: preprocess_text(x))
    train.to_csv('ml_clean_data.csv', sep='\t')
else:
    train = pd.read_csv('ml_clean_data.csv', sep='\t')
# 建立映射
label_id2cate = dict(enumerate(train.categories.unique()))
label_cate2id = {value: key for key, value in label_id2cate.items()}
train["label"] = train["categories"].map(label_cate2id)
df = train[["text", "label"]]
df.head()

# 生成提交文件
def submit_file(result_pred,label_id2cate):#result_pred是预测的结果,应该是10000个值
    print("存储预测结果")
    sub=pd.read_csv('./sample_submit.csv')# 官网给出的格式文件
    sub['categories']=list(result_pred)
    sub['categories']=sub['categories'].map(label_id2cate)
    sub.to_csv('submit/submit_{}_ensemble.csv'.format(models_name), index=False)

# 5折交叉验证

params = {
    "device_type": "gpu",
    "max_depth": 5,
    "min_data_in_leaf": 20,
    "num_leaves": 35,
    "learning_rate": 0.1,
    "lambda_l1": 0.1,
    "lambda_l2": 0.2,
    "objective": "multiclass",
    "num_class": 39,
    "verbose": 0,
}

train_data = df["text"]
train_label = df["label"]

NFOLDS = 5
kfold = StratifiedKFold(n_splits=NFOLDS, shuffle=True, random_state=1)
kf = kfold.split(train_data, train_label)
cv_pred = np.zeros(test.shape[0])
valid_best = 0

for i, (train_fold, validate) in enumerate(kf):

    #     X=train_data.reset_index(drop=True)
    #     y= train_label.reset_index(drop=True)
    X_train, X_validate, label_train, label_validate = (
        train_data.iloc[train_fold],
        train_data.iloc[validate],
        train_label[train_fold],
        train_label[validate],
    )

    # 将语料转化为词袋向量,根据词袋向量统计TF-IDF
    vectorizer = CountVectorizer(max_features=50000)
    tf_idf_transformer = TfidfTransformer()
    tf_idf = tf_idf_transformer.fit_transform(vectorizer.fit_transform(X_train))
    X_train_weight = tf_idf.toarray()  # 训练集TF-IDF权重矩阵
    tf_idf = tf_idf_transformer.transform(vectorizer.transform(X_validate))
    X_validate_weight = tf_idf.toarray()  # 验证集TF-IDF权重矩阵

    dtrain = lgb.Dataset(X_train_weight, label_train)
    dvalid = lgb.Dataset(X_validate_weight, label_validate, reference=dtrain)

    bst = lgb.train(
        params,
        dtrain,
        num_boost_round=10000,
        valid_sets=dvalid,
        early_stopping_rounds=500,
    )

    preds_last = bst.predict(test, num_iteration=bst.best_iteration)
    cv_pred += bst.predict(test, num_iteration=bst.best_iteration)
    valid_best += bst.best_score["valid_0"]["auc"]

cv_pred /= NFOLDS  # 预测输出
valid_best /= NFOLDS
result =np.argmax(cv_pred,axis=1) 
submit_file(list(result),label_id2cate)
目录
相关文章
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
29天前
|
机器学习/深度学习 搜索推荐 算法
机器学习-点击率预估-论文速读-20240916
机器学习-点击率预估-论文速读-20240916
32 0
|
3月前
|
机器学习/深度学习 存储 人工智能
【ACL2024】阿里云人工智能平台PAI多篇论文入选ACL2024
近期,阿里云人工智能平台PAI的多篇论文在ACL2024上入选。论文成果是阿里云与阿里集团安全部、华南理工大学金连文教授团队、华东师范大学何晓丰教授团队共同研发。ACL(国际计算语言学年会)是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台PAI在自然语言处理和多模态算法、算法框架能力方面研究获得了学术界认可。
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--6 提分方案
在讯飞英文学术论文分类挑战赛中的提分技巧和实现方法,包括数据增强、投票融合、伪标签等策略,以及加快模型训练的技巧,如混合精度训练和使用AdamW优化器等。
40 0
|
3月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
39 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。
|
1月前
|
自然语言处理 算法 Python
自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
【10月更文挑战第9天】自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
47 4