【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案

简介: 在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。

1 相关信息

2 引言

(1)机器学习方法在我们的任务中,没有重点研究,仅写出一个简单的baseline。该部分由队友博远实现,比赛最后的模型融合的部分,使用到,单个LGB模型,没有调参,5折交叉验证,线上都能达到0.79+的成绩,还有很多可提分点,如果时间允许,有很多提分技巧

  • XGB模型
  • LR模型
  • 多模型融合EnsembleVoteClassifier
  • 多模型融合StackingClassifier
  • 加入伪标签训练
  • 数据增强
    (2)实现步骤
  • 数据预处理
  • K折划分数据
  • TF-IDF提取特征,将单词转为数值矩阵
  • 训练模型
  • 每折预测一遍结果求和,最后取K折的结果的平均作为预测矩阵
  • np.argmax取得预测值
  • 生成提交文件

3 实现

Github源码下载

import pandas as pd
from nltk.stem import WordNetLemmatizer
import re
import nltk
from spacy.lang.en.stop_words import STOP_WORDS
import numpy as np
import lightgbm as lgb
from sklearn import metrics
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.model_selection import KFold, StratifiedKFold

from sklearn.model_selection import train_test_split

clean_tag =True
if clean_tag ==True:
    en_stop = set(nltk.corpus.stopwords.words('english'))
    custom_stop_words = [
        'doi', 'preprint', 'copyright', 'peer', 'reviewed', 'org', 'https', 'et', 'al', 'author', 'figure',
        'rights', 'reserved', 'permission', 'used', 'using', 'biorxiv', 'medrxiv', 'license', 'fig', 'fig.',
        'al.', 'elsevier', 'pmc', 'czi', 'www'
    ]
    for word in custom_stop_words:
        en_stop.add(word)

    def preprocess_text(document):
        stemmer = WordNetLemmatizer()

        document = str(document)
        document = document.replace("\n", ' ')
        document = document.replace("/'", '')
        # Remove  all the special characters
        document = re.sub(r'\W', ' ', document)

        # 删除所有单个字符
        document = re.sub(r'\s+[a-zA-Z]\s+', ' ', document)

        # 从开头删除单个字符
        document = re.sub(r'\^[a-zA-Z]\s+', ' ', document)

        # 用单个空格替换多个空格
        document = re.sub(r'\s+', ' ', document, flags=re.I)

        # 数字泛化:,所有大于9的数字都被hashs替换了。即成为# #,123变成# # #或15.80€变成# #,# #€。
        document = re.sub('[0-9]{5,}', '#####', document)
        document = re.sub('[0-9]{4}', '####', document)
        document = re.sub('[0-9]{3}', '###', document)
        document = re.sub('[0-9]{2}', '##', document)
        # 转换为小写
        document = document.lower()
        # 词形还原
        tokens = document.split()
        tokens = [stemmer.lemmatize(word) for word in tokens]
        # 去停用词
        tokens = [word for word in tokens if word not in en_stop]
        # 去低频词
        tokens = [word for word in tokens if len(word) > 3]
        preprocessed_text = ' '.join(tokens)

        return preprocessed_text

    train = pd.read_csv("train/train_stop.csv", sep="\t")
    test = pd.read_csv("test/test.csv", sep="\t")
    sub = pd.read_csv("sample_submit.csv")

    train["text"] = train["title"] + " " + train["abstract"]
    # for i in range(len(train["text"])):
    #     train["text"][i] = preprocess_text(train["text"][i])
    train["text"] = train["text"].progress_apply(lambda x: preprocess_text(x))
    train.to_csv('ml_clean_data.csv', sep='\t')
else:
    train = pd.read_csv('ml_clean_data.csv', sep='\t')
# 建立映射
label_id2cate = dict(enumerate(train.categories.unique()))
label_cate2id = {value: key for key, value in label_id2cate.items()}
train["label"] = train["categories"].map(label_cate2id)
df = train[["text", "label"]]
df.head()

# 生成提交文件
def submit_file(result_pred,label_id2cate):#result_pred是预测的结果,应该是10000个值
    print("存储预测结果")
    sub=pd.read_csv('./sample_submit.csv')# 官网给出的格式文件
    sub['categories']=list(result_pred)
    sub['categories']=sub['categories'].map(label_id2cate)
    sub.to_csv('submit/submit_{}_ensemble.csv'.format(models_name), index=False)

# 5折交叉验证

params = {
    "device_type": "gpu",
    "max_depth": 5,
    "min_data_in_leaf": 20,
    "num_leaves": 35,
    "learning_rate": 0.1,
    "lambda_l1": 0.1,
    "lambda_l2": 0.2,
    "objective": "multiclass",
    "num_class": 39,
    "verbose": 0,
}

train_data = df["text"]
train_label = df["label"]

NFOLDS = 5
kfold = StratifiedKFold(n_splits=NFOLDS, shuffle=True, random_state=1)
kf = kfold.split(train_data, train_label)
cv_pred = np.zeros(test.shape[0])
valid_best = 0

for i, (train_fold, validate) in enumerate(kf):

    #     X=train_data.reset_index(drop=True)
    #     y= train_label.reset_index(drop=True)
    X_train, X_validate, label_train, label_validate = (
        train_data.iloc[train_fold],
        train_data.iloc[validate],
        train_label[train_fold],
        train_label[validate],
    )

    # 将语料转化为词袋向量,根据词袋向量统计TF-IDF
    vectorizer = CountVectorizer(max_features=50000)
    tf_idf_transformer = TfidfTransformer()
    tf_idf = tf_idf_transformer.fit_transform(vectorizer.fit_transform(X_train))
    X_train_weight = tf_idf.toarray()  # 训练集TF-IDF权重矩阵
    tf_idf = tf_idf_transformer.transform(vectorizer.transform(X_validate))
    X_validate_weight = tf_idf.toarray()  # 验证集TF-IDF权重矩阵

    dtrain = lgb.Dataset(X_train_weight, label_train)
    dvalid = lgb.Dataset(X_validate_weight, label_validate, reference=dtrain)

    bst = lgb.train(
        params,
        dtrain,
        num_boost_round=10000,
        valid_sets=dvalid,
        early_stopping_rounds=500,
    )

    preds_last = bst.predict(test, num_iteration=bst.best_iteration)
    cv_pred += bst.predict(test, num_iteration=bst.best_iteration)
    valid_best += bst.best_score["valid_0"]["auc"]

cv_pred /= NFOLDS  # 预测输出
valid_best /= NFOLDS
result =np.argmax(cv_pred,axis=1) 
submit_file(list(result),label_id2cate)
目录
相关文章
|
12月前
|
人工智能 Linux API
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
Omnitool 是一款开源的 AI 桌面环境,支持本地运行,提供统一交互界面,快速接入 OpenAI、Stable Diffusion、Hugging Face 等主流 AI 平台,具备高度扩展性。
1288 94
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
|
自然语言处理 API C++
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
SmartVscode插件深度解析:自然语言控制VS Code的革命性工具及其开源框架App-Controller
2066 1
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
|
7月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
9月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
545 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
3302 65
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
12月前
|
人工智能 自然语言处理 数据可视化
Data Formulator:微软开源的数据可视化 AI 工具,通过自然语言交互快速创建复杂的数据图表
Data Formulator 是微软研究院推出的开源 AI 数据可视化工具,结合图形化界面和自然语言输入,帮助用户快速创建复杂的可视化图表。
1191 10
Data Formulator:微软开源的数据可视化 AI 工具,通过自然语言交互快速创建复杂的数据图表
|
人工智能 自然语言处理 API
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
UI-TARS Desktop 是一款基于视觉语言模型的 GUI 代理应用,支持通过自然语言控制电脑操作,提供跨平台支持、实时反馈和精准的鼠标键盘控制。
4370 17
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
|
12月前
|
机器学习/深度学习 人工智能 并行计算
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
Unsloth 是一款开源的大语言模型微调工具,支持 Llama-3、Mistral、Phi-4 等主流 LLM,通过优化计算步骤和手写 GPU 内核,显著提升训练速度并减少内存使用。
1795 3
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
|
12月前
|
人工智能 自然语言处理 物联网
阿里万相重磅开源,人工智能平台PAI一键部署教程来啦
阿里云视频生成大模型万相2.1(Wan)重磅开源!Wan2.1 在处理复杂运动、还原真实物理规律、提升影视质感以及优化指令遵循方面具有显著的优势,轻松实现高质量的视频生成。同时,万相还支持业内领先的中英文文字特效生成,满足广告、短视频等领域的创意需求。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署阿里万相重磅开源的4个模型,可获得您的专属阿里万相服务。