☆打卡算法☆LeetCode 81、搜索旋转排序数组 II 算法解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: “给定一个整数数组,整数数组会在某一个位置进行旋转,然后给定一个整数,判断整数是否在数组中。”

一、题目


1、算法题目

“给定一个整数数组,整数数组会在某一个位置进行旋转,然后给定一个整数,判断整数是否在数组中。”

题目链接:

来源:力扣(LeetCode)

链接:81. 搜索旋转排序数组 II - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

已知存在一个按非降序排列的整数数组 nums ,数组中的值不必互不相同。

在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转 ,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,4,4,5,6,6,7] 在下标 5 处经旋转后可能变为 [4,5,6,6,7,0,1,2,4,4] 。

给你 旋转后 的数组 nums 和一个整数 target ,请你编写一个函数来判断给定的目标值是否存在于数组中。如果 nums 中存在这个目标值 target ,则返回 true ,否则返回 false 。

示例 1:
输入: nums = [2,5,6,0,0,1,2], target = 0
输出: true
复制代码
示例 2:
输入: nums = [2,5,6,0,0,1,2], target = 3
输出: false
复制代码


二、解题


1、思路分析

这道题是搜索旋转后的数组中,是否存在给定的值,这道题跟33题搜索旋转排序数组的类型很相似,是在33题的基础上修改而来,33题使用了二分查找方法。

那么对于这道题也可以使用二分查找的方法,这个首先需要确定左右取件是否是有序的。

首次二分时,无法判断左右区间是否是有序的,那么就可以将当前二分区间的左边界加1,右边界减1,然后继续在新区建上二分查找。


2、代码实现

代码参考:

class Solution {
    public boolean search(int[] nums, int target) {
        int n = nums.length;
        if (n == 0) {
            return false;
        }
        if (n == 1) {
            return nums[0] == target;
        }
        int l = 0, r = n - 1;
        while (l <= r) {
            int mid = (l + r) / 2;
            if (nums[mid] == target) {
                return true;
            }
            if (nums[l] == nums[mid] && nums[mid] == nums[r]) {
                ++l;
                --r;
            } else if (nums[l] <= nums[mid]) {
                if (nums[l] <= target && target < nums[mid]) {
                    r = mid - 1;
                } else {
                    l = mid + 1;
                }
            } else {
                if (nums[mid] < target && target <= nums[n - 1]) {
                    l = mid + 1;
                } else {
                    r = mid - 1;
                }
            }
        }
        return false;
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n)

其中n是数组的长度。

空间复杂度: O(1)

只需要一个常量级的变量空间。


三、总结

这道题和33题相比,不同的地方在于有重复数字。

使用二分查找:

  • 处理左右边界,进行二分查找
  • 分别处理前后部分



目录
打赏
0
0
0
0
6
分享
相关文章
|
3天前
|
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
48 9
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
65 10
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
28 4
|
6天前
|
【LeetCode 热题100】73:矩阵置零(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 73——矩阵置零问题,提供两种解法:一是使用额外标记数组,时间复杂度为 O(m * n),空间复杂度为 O(m + n);二是优化后的原地标记方法,利用矩阵的第一行和第一列记录需要置零的信息,将空间复杂度降低到 O(1)。文章通过清晰的代码示例与复杂度分析,帮助理解“原地操作”及空间优化技巧,并推荐相关练习题以巩固矩阵操作能力。适合刷题提升算法思维!
38 9
|
8天前
|
【LeetCode 热题100】394:字符串解码(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 394:字符串解码。题目要求对编码字符串如 `k[encoded_string]` 进行解码,其中 `encoded_string` 需重复 `k` 次。文章提供了两种解法:使用栈模拟和递归 DFS,并附有 Go 语言实现代码。栈解法通过数字栈与字符串栈记录状态,适合迭代;递归解法则利用函数调用处理嵌套结构,代码更简洁。两者时间复杂度均为 O(n),但递归需注意栈深度问题。文章还总结了解题注意事项及适用场景,帮助读者更好地掌握字符串嵌套解析技巧。
28 6
【LeetCode 热题100】139:单词拆分(动态规划全解析+细节陷阱)(Go语言版)
本题是 LeetCode 热题 139:单词拆分(Word Break),需判断字符串 `s` 是否能由字典 `wordDict` 中的单词拼接而成。通过动态规划(DP)或记忆化搜索解决。DP 中定义布尔数组 `dp[i]` 表示前 `i` 个字符是否可拆分,状态转移方程为:若存在 `j` 使 `dp[j]=true` 且 `s[j:i]` 在字典中,则 `dp[i]=true`。初始条件 `dp[0]=true`。代码实现中用哈希集合优化查找效率。记忆化搜索则从起始位置递归尝试所有切割点。两种方法各有利弊,DP 更适合面试场景。思考扩展包括输出所有拆分方式及使用 Trie 优化大字典查找。
34 6
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
35 6
|
10天前
|
【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)
本文详细解析了力扣第45题“跳跃游戏II”的三种解法:贪心算法、动态规划和反向贪心。贪心算法通过选择每一步能跳到的最远位置,实现O(n)时间复杂度与O(1)空间复杂度,是面试首选;动态规划以自底向上的方式构建状态转移方程,适合初学者理解但效率较低;反向贪心从终点逆向寻找最优跳点,逻辑清晰但性能欠佳。文章对比了各方法的优劣,并提供了Go语言代码实现,助你掌握最小跳跃次数问题的核心技巧。
66 15
|
10天前
|
【LeetCode 热题100】55:跳跃游戏(详细解析)(Go语言版)
本篇解析详细讲解了 LeetCode 热题 55——跳跃游戏(Jump Game)。通过判断是否能从数组起点跳至终点,介绍了两种高效解法:贪心算法和反向思维。贪心法通过维护最远可达位置 `maxReach` 实现一次遍历,时间复杂度 O(n),空间复杂度 O(1);反向法则从终点回溯,判断是否可到达起点。两者均简洁高效,适合面试使用。延伸题目如 LeetCode 45 进一步提升挑战。
53 7
|
10天前
|
【LeetCode 热题100】23:合并 K 个升序链表(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 23——合并 K 个升序链表的两种解法:优先队列(最小堆)和分治合并。题目要求将多个已排序链表合并为一个升序链表。最小堆方法通过维护节点优先级快速选择最小值,;分治合并则采用归并思想两两合并链表。文章提供了 Go 语言实现代码,并对比分析两种方法的适用场景,帮助读者深入理解链表操作与算法设计。
48 10

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等