☆打卡算法☆LeetCode 60、排列序列 算法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: “给定n和k,返回第k个排列。”

一、题目


1、算法题目

“给定n和k,返回第k个排列。”

题目链接:

来源:力扣(LeetCode)

链接:60. 排列序列 - 力扣(LeetCode) (leetcode-cn.com)


2、题目描述

给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。

按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

"123" "132" "213" "231" "312" "321"

给定 n 和 k,返回第 k 个排列。

示例 1:
输入: n = 3, k = 3
输出: "213"
复制代码
示例 2:
输入: n = 4, k = 9
输出: "2314"
复制代码


二、解题


1、思路分析

这个题对于给定的n和k,需要知道从左往右第k个排列中的每个位置的元素是什么。

首先求出第k个排列的首个元素,然后向下取整。

根据相似的思路,确定下一个元素。


2、代码实现

代码参考:

public class Solution {
    public int[] factor = new int[]{1,1,2,6,24,120,720,5040,40320,362880};
    public string GetPermutation(int n, int k) {
        StringBuilder path = new StringBuilder();
        bool[] visited = new bool[n + 1];
        dfs(n, k, 0, visited, path);
        return path.ToString();
    }
    private void dfs(int n, int k, int depth, bool[] visited, StringBuilder path){
        if(depth == n){
            return;
        }
        int fac = factor[n - 1 - depth];
        for(int i = 1; i <= n; i++){
            if(visited[i] == false){
                //当k大于可生成的叶子节点数,剪枝
                if(k > fac){
                    k -= fac;
                    continue;
                }
                path.Append(i.ToString());
                visited[i] = true;
                dfs(n, k, depth+1, visited, path);
                return;
            }
        }
    }
}
复制代码

网络异常,图片无法展示
|


3、时间复杂度

时间复杂度 : O(n2)

其中n是数组的长度,只需要遍历一遍数组即可求得答案。

空间复杂度: O(1)

只需要常数级别的空间存放变量。


三、总结

不要回溯,容易超时,可以通过数学的方法解决,其实就是不断缩小范围。



相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
47 0
|
2月前
|
负载均衡 算法 Java
Spring Cloud全解析:负载均衡算法
本文介绍了负载均衡的两种方式:集中式负载均衡和进程内负载均衡,以及常见的负载均衡算法,包括轮询、随机、源地址哈希、加权轮询、加权随机和最小连接数等方法,帮助读者更好地理解和应用负载均衡技术。
|
29天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
算法 C++ 容器
Leetcode第三十一题(下一个排列)
这篇文章介绍了LeetCode第31题“下一个排列”的C++解决方案,该算法通过原地修改数组来找到下一个字典序更大的排列,如果不存在则重排为字典序最小的排列。
28 0
Leetcode第三十一题(下一个排列)
|
30天前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
13天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
46 4
|
14天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
65 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
37 1
|
1月前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
50 9

推荐镜像

更多