ICCV2021 | 重新思考视觉transformers的空间维度 ​

简介: 由于基于transformers的架构在计算机视觉建模方面具有创新性,因此对有效架构的设计约定的研究还较少。从 CNN 的成功设计原则出发,我们研究了空间维度转换的作用及其对基于transformers的架构的有效性

由于基于transformers的架构在计算机视觉建模方面具有创新性,因此对有效架构的设计约定的研究还较少。从 CNN 的成功设计原则出发,我们研究了空间维度转换的作用及其对基于transformers的架构的有效性。

 

我们特别关注CNNs的降维原理;随着深度的增加,传统的 CNN 会增加通道维度并减少空间维度。我们凭经验表明,这种空间降维也有利于transformers架构,并在原始 ViT 模型上提出了一种新型的基于池化的视觉transformers  (Pooling-based Vision Transformer--PiT)。

 

我们表明 PiT 实现了针对 ViT 的改进模型能力和泛化性能。在广泛的实验中,我们进一步表明 PiT 在图像分类、目标检测和鲁棒性评估等多项任务上优于baseline。

 

 

出发点


1. CNN 限制了空间交互,ViT 允许图像中的所有位置通过transformers层交互。

2. 虽然ViT 是一种创新架构,并且已经证明了其强大的图像识别能力,但它沿用了NLP中的 Transformer 架构,没有任何变化。

3. CNN 的一些基本设计原则在过去十年中已被证明在计算机视觉领域有效,但并未得到充分反映。

因此,我们重新审视了 CNN 架构的设计原则,并研究了它们在应用于 ViT 架构时的功效。

 

创新思路


CNN 以大空间尺寸和小通道尺寸的特征开始,并逐渐增加通道尺寸,同时减小空间尺寸。由于称为空间池化的层,这种维度转换是必不可少的。现代 CNN 架构,包括 AlexNet、ResNet和 EfficientNet,都遵循这一设计原则。

 

池化层与每一层的感受野大小密切相关。 一些研究表明,池化层有助于网络的表现力和泛化性能。 然而,与 CNN 不同的是,ViT 不使用池化层,而是在所有层中使用相同大小的空间。

 

首先,我们验证了 CNN 上池化层的优势。我们的实验表明,池化层证明了 ResNet 的模型能力和泛化性能。为了将池化层的优势扩展到 ViT,我们提出了一种基于池化的视觉transformers (PiT)。

 

PiT 是一种与池化层相结合的转换器架构。它可以像在 ResNet 中一样减少 ViT 结构中的空间大小。我们还研究了 PiT 与 ViT 相比的优势,并确认池化层也提高了 ViT 的性能。

 

最后,为了分析 ViT 中池化层的效果,我们测量了 ViT 的空间交互比,类似于卷积架构的感受野大小。我们展示了池化层具有控制自注意力层中发生的空间交互大小的作用,这类似于卷积架构的感受野控制。

 

Methods


fa9d944375b75eb138e2cb760c8e4f54.png

网络架构维度配置的示意图

 

我们将 ResNet50 、Vision Transformer (ViT) 和基于池化的 Vision Transformer (PiT) 可视化;(a) ResNet50 从输入到输出逐渐下采样特征;(b) ViT 不使用池化层,因此所有层都保持特征维度;(c) PiT 涉及将层汇集到 ViT 中。

 

Pooling-based Vision Transformer(PiT)


86452124176b6fdcb2325fda1e5bc066.pngPiT 架构的池化层

 

PiT 使用基于深度卷积的池化层,以小参数实现通道乘法和空间缩减。


aa66d5974794d8e8be6aa14142831b4d.png

Effects of the pooling layer in vision transformer (ViT)

 

我们在网络架构的各个方面将我们的基于池化的视觉transformer  (PiT) 与原始 ViT 进行了比较。PiT 在容量、泛化性能和模型性能方面优于 ViT。

 

Spatial interactio

 

self-attention层在交互token数量上也有限制,因此交互区域是根据空间大小来确定的。

 

我们使用 ImageNet 上的预训练模型测量了 ViT 和 PiT 的空间交互区域。空间交互的标准是基于注意力矩阵的 soft-max 之后的分数。我们使用 1% 和 10% 作为阈值,计算超过阈值的交互发生的空间位置的数量,并通过将交互位置的数量除以空间标记的总大小来计算空间交互比率。

 

在 ViT 的情况下,交互作用平均在 20%-40% 之间,并且由于没有池化层,因此数值不会因层而有显着变化。PiT 减少了token的数量,同时通过池化增加了头部。

 

因此,如图 5 (a) 所示,早期层的交互率很小,但后一层显示出接近 100% 的交互率。为了与 ResNet 进行比较,我们将阈值更改为 10%,结果如图 5 (b) 所示。


9908d0265a0eacb7d3d4aff37ca1bc54.png

在 ResNet 的情况下,3x3 卷积意味着 3x3 空间交互。因此,我们将 3x3 除以空间大小,并将其作为近似值与注意力的交互率进行比较。虽然 ViT 的交互率在各层中是相似的,但 ResNet 和 PiT 的交互率随着它通过池化层而增加。

 

Architecture

eed0a0c80d99c5e258685c0787b6bbb8.png

该表显示了 ViT 和 PiT 的spatial sizes, number of blocks, number of heads, channel size, 和FLOPs。PiT 的结构设计为尽可能与 ViT 相似,并具有更少的 GPU 延迟。欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读

 

Conclusion


我们验证了 PiT 在各种任务上提高了 ViT 的性能。在 ImageNet 分类中,PiT 和在各种规模和训练环境下都优于 ViT。此外,我们还比较了 PiT 与各种卷积架构的性能,并指定了 Transformer 架构优于 CNN 的规模。

 

我们使用检测头进一步测量 PiT 在目标检测方面的性能。 基于 ViT 和 PiT 的 DETR在 COCO 2017 数据集上进行训练,结果表明 PiT 作为主干架构甚至比 ViT 更适合图像分类以外的任务。最后,我们通过稳健性基准验证了 PiT 在各种环境中的性能。


 516694fd5206c0596708e82296022d80.png

fb6bef6d63747f43f6c0f936657295b8.png

相关文章
|
2月前
|
机器学习/深度学习
NeurIPS 2024:标签噪声下图神经网络有了首个综合基准库,还开源
NoisyGL是首个针对标签噪声下图神经网络(GLN)的综合基准库,由浙江大学和阿里巴巴集团的研究人员开发。该基准库旨在解决现有GLN研究中因数据集选择、划分及预处理技术差异导致的缺乏统一标准问题,提供了一个公平、用户友好的平台,支持多维分析,有助于深入理解GLN方法在处理标签噪声时的表现。通过17种代表性方法在8个常用数据集上的广泛实验,NoisyGL揭示了多个关键发现,推动了GLN领域的进步。尽管如此,NoisyGL目前主要适用于同质图,对异质图的支持有限。
49 7
|
3月前
|
机器学习/深度学习 人工智能 算法
[大语言模型-论文精读] Diffusion Model技术-通过时间和空间组合扩散模型生成复杂的3D人物动作
[大语言模型-论文精读] Diffusion Model技术-通过时间和空间组合扩散模型生成复杂的3D人物动作
45 0
|
8月前
|
机器学习/深度学习 算法 计算机视觉
[YOLOv8/YOLOv7/YOLOv5系列算法改进NO.5]改进特征融合网络PANET为BIFPN(更新添加小目标检测层yaml)
本文介绍了改进YOLOv5以解决处理复杂背景时可能出现的错漏检问题。
302 5
|
8月前
|
自然语言处理 PyTorch 算法框架/工具
视觉Transformers中的位置嵌入 - 研究与应用指南
视觉Transformers中的位置嵌入 - 研究与应用指南
123 0
|
编解码 算法 数据可视化
一种联合分类与检测训练的方法——YOLO9000
一种联合分类与检测训练的方法——YOLO9000
255 0
一种联合分类与检测训练的方法——YOLO9000
|
机器学习/深度学习 算法 数据可视化
做语义分割不用任何像素标签,UCSD、英伟达在ViT中加入分组模块,入选CVPR2022
做语义分割不用任何像素标签,UCSD、英伟达在ViT中加入分组模块,入选CVPR2022
140 0
做语义分割不用任何像素标签,UCSD、英伟达在ViT中加入分组模块,入选CVPR2022
|
机器学习/深度学习 人工智能 算法
【Pytorch神经网络实战案例】21 基于Cora数据集实现Multi_Sample Dropout图卷积网络模型的论文分类
是在Dropout随机选取节点丢弃的部分上进行优化,即将Dropout随机选取的一组节点变成随机选取多组节点,并计算每组节点的结果和反向传播的损失值。最终,将计算多组的损失值进行平均,得到最终的损失值,并用其更新网络,如图9-19所示。
270 0
【Pytorch神经网络实战案例】21 基于Cora数据集实现Multi_Sample Dropout图卷积网络模型的论文分类
|
机器学习/深度学习 编解码 算法
SFT-GAN、CSRCNN、CSNLN、HAN+、Config (f)…你都掌握了吗?一文总结超分辨率分析必备经典模型(三)(2)
SFT-GAN、CSRCNN、CSNLN、HAN+、Config (f)…你都掌握了吗?一文总结超分辨率分析必备经典模型(三)
158 0
|
机器学习/深度学习 编解码 自然语言处理
SFT-GAN、CSRCNN、CSNLN、HAN+、Config (f)…你都掌握了吗?一文总结超分辨率分析必备经典模型(三)(1)
SFT-GAN、CSRCNN、CSNLN、HAN+、Config (f)…你都掌握了吗?一文总结超分辨率分析必备经典模型(三)
258 0
|
人工智能 自然语言处理
OpenAI文本生成3D模型再升级,数秒完成建模,比Point·E更好用
OpenAI文本生成3D模型再升级,数秒完成建模,比Point·E更好用
230 0