[YOLOv8/YOLOv7/YOLOv5系列算法改进NO.5]改进特征融合网络PANET为BIFPN(更新添加小目标检测层yaml)

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本文介绍了改进YOLOv5以解决处理复杂背景时可能出现的错漏检问题。

前      言:作为当前先进的深度学习目标检测算法YOLOv5,已经集合了大量的trick,但是在处理一些复杂背景问题的时候,还是容易出现错漏检的问题。此后的系列文章,将重点对YOLOv5的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。

解决问题:加入BIFPN加权双向金字塔结构,提升不同尺度的检测效果。

image.gif 编辑

image.gif 编辑


2023.1.8更新

有朋友问在添加小目标检测层,四个检测层的基础上如何改进特征融合网络,改进方法其他不变,需要修改yaml文件,有需要可关注私信我。 部分yaml内容如下所示:完整见百度网盘链接:链接:https://pan.baidu.com/s/1Qnn6QtGbZ7H3_h89QYA2vQ
提取码:关注私信后获取——扣扣
2453038530

# parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
# anchors
anchors:
  - [ 19,27,  44,40,  38,94 ]  # P3/8
  - [ 96,68,  86,152,  180,137 ]  # P4/16
  - [ 140,301,  303,264,  238,542 ]  # P5/32
  - [ 436,615,  739,380,  925,792 ]  # P6/64
# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [ [-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
    [ -1, 1, Conv, [ 128, 3, 2 ] ],  # 1-P2/4
    [ -1, 3, C3, [ 128 ] ],
    [ -1, 1, Conv, [ 256, 3, 2 ] ],  # 3-P3/8
    [ -1, 6, C3, [ 256 ] ],  #4
    [ -1, 1, Conv, [ 512, 3, 2 ] ],  # 5-P4/16
    [ -1, 9, C3, [ 512 ] ], #6
    [ -1, 1, Conv, [ 768, 3, 2 ] ],  # 7-P5/32
    [ -1, 3, C3, [ 768 ] ], #8
    [ -1, 1, Conv, [ 1024, 3, 2 ] ],  # 9-P6/64
    [ -1, 3, C3, [ 1024 ] ],
    [ -1, 1, SPPF, [ 1024, 5 ] ], # 11
  ]
# BIFPN garph
#                        
# p6     ----------------- --------Concat_bifpn----> P6(out)
#      /                  \                         \       \
#      /-------------------------------------------->  
#     /                Upsample              Concat_bifpn   Concat_bifpn
#    /                    |                          \      | 
# p5 ---Concat_bifpn---> head 5 ---Concat_bifpn----> P5(out)
#                        \                                  \
#                      Upsample                              Concat_bifpn
#       ----------------  | ----------------------->        /
#     /                   \                         \       \
#    /                    |                  Concat_bifpn   |
#   /                     \                          \     |
# p4 ---Concat_bifpn---> head 4 ---Concat_bifpn--->  P4(out)
#                        \                                 \
#                         ----Upsample---->                Concat_bifpn   
#                                          \               /
# p3 ---Concat_bifpn------------------------------>  P3(out)
  
# YOLOv5 head                                                                       
head:                                                                       
  [ [ -1, 1, Conv, [ 768, 1, 1 ] ],    # 12 head                                  
    [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],                           
    [ [ -1, 8 ], 1, Concat_bifpn, [ 384,384] ],  # cat backbone P5                
    [ -1, 3, C3, [ 768, False ] ],  # 15
    [ -1, 1, Conv, [ 512, 1, 1 ] ],
    [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
    [ [ -1, 6 ], 1, Concat_bifpn, [ 256,256] ],  # cat backbone P4
    [ -1, 3, C3, [ 512, False ] ],  # 19

image.gif

添加方法(以下改进步骤方法为在三个检测层的基础上)

第一步:common.py构建Concat_BIFPN模块

class Concat_bifpn(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, c1, c2):
        super(Concat_bifpn, self).__init__()
        self.w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
       # self.w3 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
        self.conv = Conv(c1, c2, 1 ,1 ,0 )
        self.act= nn.ReLU()
    def forward(self, x): # mutil-layer 1-3 layers #ADD or Concat 
        #print("bifpn:",x.shape)
        if len(x) == 2:
            w = self.w1
            weight = w / (torch.sum(w, dim=0) + self.epsilon)
            x = self.conv(self.act(weight[0] * x[0] + weight[1] * x[1]))
        elif len(x) == 3: 
            w = self.w2
            weight = w / (torch.sum(w, dim=0) + self.epsilon)
            x = self.conv(self.act (weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))
        # elif len(x) == 4:    
        #     w = self.w3
        #     weight = w / (torch.sum(w, dim=0) + self.epsilon)
        #     x = self.conv(self.act(weight[0] * x[0] + weight[1] * x[1] + weight[2] *x[2] + weight[3]*x[3] ))
        return x

image.gif

第二步:yolo.py中注册Concat_BIFPNt模块

elif m is Concat_bifpn:
            c2 = max([ch[x] for x in f])

image.gif

第三步:修改yaml文件(以修改官方YOLOv5s.yaml为例),需要修改head(特征融合网络)

# parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],   # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],
  ]
# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1,6], 1, Concat_bifpn, [256,256]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat_bifpn, [128,128]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
   [-1, 1, Conv, [512, 3, 2]],   # 320, 640 # 
   [[-1, 6, 13], 1, Concat_bifpn, [256,256]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
   [-1, 1, Conv, [1024, 3, 2]], # 640, 1280 # 
   [[-1, 9], 1, Concat_bifpn, [512, 512]],  # cat head P5  cat 20,20 #22
   [-1, 3, C3, [1024, False]],  # 25 (P5/32-large) # 1280, 1280  #23
   [[17, 20, 23], 1, Detect, [nc, anchors]] # Detect(P3, P4, P5)
  ]

image.gif

Model Summary: 290 layers, 8114651 parameters, 8114651 gradients, 17.4 GFLOPs

image.gif

2023.2.19补充:如果需要在YOLOv5l.yaml等网络结构进行修改的话,不可直接用以上的yaml文件或者就简单修改depth_multiple为1.0,而是 需要修改Concat_bifpn, [256,256]中的通道数为对应网络实际通道数。具体如下所示:

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],   # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],
  ]
# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1,6], 1, Concat_bifpn, [512,512]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat_bifpn, [256,256]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
   [-1, 1, Conv, [512, 3, 2]],   # 320, 640 # 
   [[-1, 6, 13], 1, Concat_bifpn, [512,512]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
   [-1, 1, Conv, [1024, 3, 2]], # 640, 1280 # 
   [[-1, 9], 1, Concat_bifpn, [1024, 1024]],  # cat head P5  cat 20,20 #22
   [-1, 3, C3, [1024, False]],  # 25 (P5/32-large) # 1280, 1280  #23
   [[17, 20, 23], 1, Detect, [nc, anchors]] # Detect(P3, P4, P5)
  ]

image.gif

第四步:将train.py中改为本文的yaml文件即可,开始训练

结    果:本人在多个数据集上做了大量实验,针对不同的数据集效果不同,同一个数据集的不同添加位置方法也是有差异,需要大家进行实验。有效果有提升的情况占大多数。

预告一下:下一篇内容分享增加小目标检测层。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:,不仅仅是可以添加进YOLOv5,也可以添加进任何其他的深度学习网络,不管是分类还是检测还是分割,主要是计算机视觉领域,都可能会有不同程度的提升效果。

最后,四个检测层的基础上改进特征融合网络为BIFPN的话,需要修改yaml文件,有需要可关注私信我。

相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
139 55
|
19天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
109 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
23小时前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
101 80
|
18天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
114 30
|
6天前
|
JSON 算法 Java
Nettyの网络聊天室&扩展序列化算法
通过本文的介绍,我们详细讲解了如何使用Netty构建一个简单的网络聊天室,并扩展序列化算法以提高数据传输效率。Netty的高性能和灵活性使其成为实现各种网络应用的理想选择。希望本文能帮助您更好地理解和使用Netty进行网络编程。
25 12
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
20天前
|
存储 人工智能 安全
云计算与网络安全:技术融合与挑战
在数字化时代的浪潮中,云计算和网络安全已成为推动社会进步的两大关键技术。本文将探讨云计算服务的发展,网络安全的重要性,以及信息安全技术的演进。我们将通过实例分析,揭示云服务如何增强数据保护,网络安全措施如何应对新兴威胁,以及信息安全技术的创新如何为企业带来竞争优势。文章旨在为读者提供对云计算和网络安全领域的深入理解,并展示它们如何共同塑造我们的未来。
|
19天前
|
存储 安全 网络安全
云计算与网络安全:技术融合下的挑战与机遇
随着云计算技术的飞速发展,网络安全问题也日益凸显。本文将探讨云计算环境下的网络安全挑战,以及如何通过技术创新来应对这些挑战。我们将分析云服务的安全特性,讨论信息安全的最佳实践,并展望未来云计算与网络安全的发展趋势。
|
3月前
|
JSON Kubernetes API
深入理解Kubernetes配置:编写高效的YAML文件
深入理解Kubernetes配置:编写高效的YAML文件