数据标准预处理合集_python机器学习sklearn库

简介: 数据标准预处理合集_python机器学习sklearn库

数据获取

在这里插入图片描述
以鸢尾数据为例,首先加载数据集。

from sklearn.datasets import load_iris

dataset = load_iris()
# print(dataset)
X = dataset.data
y = dataset.target

可以下查看下数据基本特征

print(X)

在这里插入图片描述

print(y)

在这里插入图片描述


①归一化 MinMaxScaler

1.1默认调用

from sklearn.preprocessing import MinMaxScaler
X_transformed = MinMaxScaler().fit_transform(X)
print(X_transformed)

程序执行结果:
在这里插入图片描述

1.2了解相关属性/参数

实例化MinMaxScaler()时可传入相关属性

MinMaxScaler(self, feature_range=(0, 1), *, copy=True, clip=False)

  • feature_range默认为元组(0,1),表示特征值范围
  • copy默认为True,表示不改变原X,该为False后原X被改变。
  • clip不知道是啥属性,一般应该也用不上,知道的大佬可以在评论区补充。

示例

from sklearn.preprocessing import MinMaxScaler
MinMaxScaler(feature_range=(0, 0.5), copy=False).fit_transform(X)
print(X)

程序执行结果:
在这里插入图片描述


②正则化 Normalizer

2.1默认调用

from sklearn.preprocessing import Normalizer
X_transformed = Normalizer().fit_transform(X)
print(X_transformed)

程序执行结果:
在这里插入图片描述


2.2相关属性/参数

(self, norm=‘l2’, *, copy=True)

norm默认为’l2’(是字母l不是数字1)。可以取的值有"l1",“l2”,“max”。

  • 'l2’表示,变换方式为,每个特征值,转换为该特征值的平方,占该该样本所有特征值的平方之比。

    在这里插入图片描述

  • 'l1’表示,变换方式为,每个特征值,转换为 其占该样本每个特征值的绝对值之和之比。

  • 'max’表示,变换方式为,各个特征值除以样本中特征值最大的值。

copy同上,即是否复制。默认为True表示复制,复制就不更改原数据集。

from sklearn.preprocessing import Normalizer
X_transformed = Normalizer(norm='l1').fit_transform(X)
print(X_transformed)

程序执行结果:

在这里插入图片描述


③标准化

3.1默认调用

from sklearn.preprocessing import StandardScaler
X_transformed = StandardScaler().fit_transform()
print(X_transformed)

程序执行结果:
在这里插入图片描述

3.2相关属性/参数

StandardScaler(self, *, copy=True, with_mean=True, with_std=True)

  • with_mean 考虑均值
  • with_std 考虑标准差
  • copy 是否复制(同上)

④二值化

4.1默认调用

阈值默认为0,即大于0的数据转换为1,小于0的数据都转换为0。

from sklearn.preprocessing import Binarizer
X_transformed = Binarizer().fit_transform(X)
print(X_transformed)

程序执行结果:
在这里插入图片描述

4.2相关属性/参数

(self, *, threshold=0.0, copy=True)

  • threshold 阈值
  • copy 是否复制(同上)
from sklearn.preprocessing import Binarizer
X_transformed = Binarizer(threshold=3).fit_transform(X)
print(X_transformed)

程序执行结果:
在这里插入图片描述

目录
相关文章
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
模型训练数据-MinerU一款Pdf转Markdown软件
MinerU是由上海人工智能实验室OpenDataLab团队开发的开源智能数据提取工具,专长于复杂PDF文档的高效解析与提取。它能够将含有图片、公式、表格等多模态内容的PDF文档转化为Markdown格式,同时支持从网页和电子书中提取内容,显著提升了AI语料准备的效率。MinerU具备高精度的PDF模型解析工具链,能自动识别乱码,保留文档结构,并将公式转换为LaTeX格式,广泛适用于学术、财务、法律等领域。
95 4
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
83 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
47 2
|
1月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
32 2
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
69 1
|
1月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
114 1
|
1月前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
47 3
|
29天前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
41 0
|
29天前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
38 0
下一篇
DataWorks