python数据分析基础007 -利用pandas带你玩转excel表格(中上篇)

简介: 还有一些基本的操作,接下来我们一起再深入的去了解pandas在excel中其他的一些有趣的操作吧!!

文章要点

  • 🍻结语
  • 🐚作者简介:苏凉(专注于网络爬虫,数据分析)

🐳博客主页:苏凉.py的博客

👑名言警句:海阔凭鱼跃,天高任鸟飞。

📰要是觉得博主文章写的不错的话,还望大家三连支持一下呀!!!

👉关注✨点赞👍收藏📂

🍺前言image.png🍀(一)在pandas中对excel进行函数填充

🍒1.在excel中进行函数填充image.png

🍒2.在pandas中实现函数填充

🔥2.1 列于列进行计算image.png

import pandas as pd
book = pd.read_excel('./Book.xlsx')
df = pd.DataFrame(book)
# 1.列与列进行计算
now_price = df['原价'] * df['折扣']
df['现价']=now_price
print(df)

结果:

🔥2.2 单元格与单元格进行计算image.png

# 2.单元格和单元格进行计算
# # 对索引进行遍历
for i in df.index:
    df['现价'].at[i] = df['原价'].at[i] * df['折扣'].at[i]

结果与上述相同。

🔥2.3 部分数据计算image.png

# 3.对部分单元格进行遍历
for i in range(5,11):
  df['现价'].at[i] = df['原价'].at[i] * df['折扣'].at[i]

结果:

🔥2.4 列增值

🌟2.4.1 pandas中的apply函数image.png

4.列增值
def add(x):
    return x+5
df['原价'] = df['原价'].apply(add)

image.png

df['原价'] = df['原价'].apply(lambda x:x+5)

以上两种方法都可以的到同样的结果:

🍀(二)排序以及多重排序在excel表格中我们可以对数据进行从大到小或是从小到大排序,也可以对多列数据进行排序,那再pandas中我们要如何操作呢?接下来就让我们一起看看吧!


实例:我们要对该表格的价格进行从大到小排序,以及将不值且价格从大到小来进行排序


🍒1.在excel表格中进行操作


结果:



🍒2.在pandas中实现排序操作

image.png

import pandas as pd
list = pd.read_excel('./count.xlsx')
df = pd.DataFrame(list)
df.sort_values(by=['Worthy','Price'],inplace=True,ascending=[True,False])
print(df)

image.png结果:

这样我们就实现了以上结果。

🍀(三)数据筛选

🍒1.在excel中进行数据筛选image.png🍒2.在pandas中实现数据筛选image.png

import pandas as pd
def age_25(a):
    return a<25
def score_85(b):
    return b>=85 and b <=100
student = pd.read_excel('./Students.xlsx',index_col='ID')
df = pd.DataFrame(student)
fin = df.loc[df['Age'].apply(age_25)].loc[df['Score'].apply(score_85)]
print(fin)

image.png

fin = df.loc[df['Age'].apply(lambda x:x<25)].loc[df['Score'].apply(lambda y:y>=85 and y<=100)]

两种方法结果相同:

🍻结语image.png

相关文章
|
13天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
22天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
38 2
|
12天前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
20天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
20天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
22天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
22天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
4月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
86 2
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
197 4
|
4月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
87 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析