python数据分析基础002 -使用matplotlib绘图(散点图,条形图,直方图)

简介: python数据分析基础002 -使用matplotlib绘图(散点图,条形图,直方图)

文章目录🍇 前言

🍈(一)散点图的绘制

🥂1.设置字体

🍷2.设置图片大小

🍸3.设置x轴和y轴的数值

🍹4.使用scatter方法绘制散点图

🍺5.添加图例

🍻6.设置xy轴以及标题的描述信息

🥂7.设置xy的刻度

🥛8.添加水印

☕9.保存和展示

🥤10.源码及结果展示

🍉(二)条形图的绘制

🍋(三)直方图的绘制

🌸1.设置字体

🌹2.设置组距

🌺3.绘制直方图

🌻4.设置x轴的刻度

🌷5.设置xy以及标题说明

🥀6.添加网格(可选)

☘7.保存及展示

🌱8.源码及结果


🍒结语

🐚作者简介: 苏凉(在python路上)

🐳博客主页: 苏凉.py的博客

👑名言警句: 海阔凭鱼跃,天高任鸟飞。

📰要是觉得博主文章写的不错的话,还望大家三连支持一下呀!!!

👉关注✨点赞👍收藏📂

🍇 前言image.pngimage.png🍈(一)散点图的绘制

实例:image.png

🥂1.设置字体

image.png

my_font = font_manager.FontProperties(fname='./msyh.ttc')

🍷2.设置图片大小

plt.figure(figsize=(20,8),dpi=80)

🍸3.设置x轴和y轴的数值image.png

x_5 = range(1,32)
x_10 = range (41,72)
y_5 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,24,25,26]
y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,9,10,8,6]

🍹4.使用scatter方法绘制散点图

image.png

plt.scatter(x_5,y_5,label = '5月份')
plt.scatter(x_10,y_10,label = '10月份')

🍺5.添加图例

plt.legend(loc= "upper left", prop = my_font)

🍻6.设置xy轴以及标题的描述信息

plt.xlabel('时间',fontproperties = my_font)
plt.ylabel('温度',fontproperties = my_font)
plt.title('5月和10月气温变化散点图',fontproperties = my_font)

🥂7.设置xy的刻度

x_totle =list(x_5) + list(x_10)
x_ticks_label = ['5月{}日'.format(i) for i in x_5]
x_ticks_label += ['10月{}日'.format(i-40) for i in x_10]
# rotation设置描述信息的倾斜角度
plt.xticks(x_totle[::1],x_ticks_label[::1],fontproperties = my_font,rotation = 45)

🥛8.添加水印

plt.text(
    x = 25.5,y= 15,
    s = '苏凉.py' ,fontproperties = my_font,
    color = 'b' ,fontsize = 40,
    ha='center', va='center', alpha=0.09
)

☕9.保存和展示

plt.savefig('./散点图.png')
plt.show()

🥤10.源码及结果展示

from matplotlib import pyplot as plt
from matplotlib import font_manager
# 设置字体
my_font = font_manager.FontProperties(fname='./msyh.ttc')
# 设置图片大小
plt.figure(figsize=(20,8),dpi=80)
# 设置xy轴的数值
x_5 = range(1,32)
x_10 = range (41,72)
y_5 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,24,25,26]
y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,9,10,8,6]
# 使用scatter方法绘制散点图
plt.scatter(x_5,y_5,label = '5月份')
plt.scatter(x_10,y_10,label = '10月份')
# 添加图例
plt.legend(loc= "upper left", prop = my_font)
# 设置xy轴以及标题的描述信息
plt.xlabel('时间',fontproperties = my_font)
plt.ylabel('温度',fontproperties = my_font)
plt.title('5月和10月气温变化散点图',fontproperties = my_font)
# 设置xy的刻度
x_totle =list(x_5) + list(x_10)
x_ticks_label = ['5月{}日'.format(i) for i in x_5]
x_ticks_label += ['10月{}日'.format(i-40) for i in x_10]
# rotation设置描述信息的倾斜角度
plt.xticks(x_totle[::1],x_ticks_label[::1],fontproperties = my_font,rotation = 45)
# 添加水印
plt.text(
    x = 25.5,y= 15,
    s = '苏凉.py' ,fontproperties = my_font,
    color = 'b' ,fontsize = 40,
    ha='center', va='center', alpha=0.09
)
# 保存图片
plt.savefig('./散点图.png')
#展示图片
plt.show()

运行结果:

plt.bar(x_5,y_5,label = '5月份')
plt.bar(x_10,y_10,label = '10月份')

运行结果:image.png

🍉(二)条形图的绘制image.png

plt.bar(x_5,y_5,label = '5月份')
plt.bar(x_10,y_10,label = '10月份')

运行结果:

image.png

plt.barh(x_5,y_5,label = '5月份')
plt.barh(x_10,y_10,label = '10月份')

image.png

plt.yticks(x_totle[::1],x_ticks_label[::1],fontproperties = my_font)

运行结果:

🍋(三)直方图的绘制image.png

🌸1.设置字体

my_font = font_manager.FontProperties(fname= './msyh.ttc')

🌹2.设置组距

d = 7
num = max(x) - min(x)
numbins = num//7

🌺3.绘制直方图image.png

plt.hist(x,numbins)

🌻4.设置x轴的刻度

plt.xticks(range(min(x),max(x)+d,d))

🌷5.设置xy以及标题说明

plt.xlabel('范围',fontproperties = my_font)
plt.ylabel('个数' ,fontproperties = my_font)
plt.title('直方图',fontproperties = my_font)

🥀6.添加网格(可选)

plt.grid(color ='r' ,alpha = 0.2)

☘7.保存及展示

plt.savefig('./直方图.png')
plt.show()

🌱8.源码及结果

from matplotlib import pyplot as plt
from matplotlib import font_manager
# 设置字体
my_font = font_manager.FontProperties(fname= './msyh.ttc')
x = [10,15,9,20,15,45,65,25,15,78,65,32,32,45,65,10,9,45,85,74,62,54,62,74,65,45,10,102,105,102,105,107,45,65,95]
# 设置组距
d = 7
num = max(x) - min(x)
numbins = num//7
# 绘制直方图
plt.hist(x,numbins)
plt.xticks(range(min(x),max(x)+d,d))
plt.xlabel('范围',fontproperties = my_font)
plt.ylabel('个数' ,fontproperties = my_font)
plt.title('直方图',fontproperties = my_font)
# 添加表格
plt.grid(color ='r' ,alpha = 0.2)
plt.savefig('./直方图.png')
plt.show()

结果展示:

🍒结语image.png

相关文章
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
27天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
66 8
|
1月前
|
数据可视化 Python
Matplotlib 直方图
Matplotlib 直方图
44 11
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
2月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
2月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
4月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
4月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
66 1
|
4月前
|
存储 数据可视化 数据挖掘
揭秘!Matplotlib与Seaborn联手,如何让Python数据分析结果一目了然,惊艳全场?
在数据驱动时代,高效直观地展示分析结果至关重要。Python中的Matplotlib与Seaborn是两大可视化工具,结合使用可生成美观且具洞察力的图表。本文通过分析某电商平台的商品销量数据集,展示了如何利用这两个库揭示商品类别与月份间的销售关系及价格对销量的影响。首先使用Matplotlib绘制月份销量分布直方图,再借助Seaborn的箱线图进一步探索不同类别和价格区间下的销量稳定性。
74 10
|
4月前
|
数据可视化 Python
Python中的数据可视化:使用Matplotlib绘制图表
【9月更文挑战第11天】在这篇文章中,我们将探索如何使用Python的Matplotlib库来创建各种数据可视化。我们将从基本的折线图开始,然后逐步介绍如何添加更多的功能和样式,以使您的图表更具吸引力和信息量。无论您是数据科学家、分析师还是任何需要将数据转化为视觉形式的专业人士,这篇文章都将为您提供一个坚实的起点。让我们一起潜入数据的海洋,用视觉的力量揭示其背后的故事。
67 17