专车数据层架构进化往事

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
简介: 很多年前,读了子柳老师的《淘宝技术这十年》。这本书成为了我的架构启蒙书,书中的一句话像种子一样深埋在我的脑海里:"好的架构是进化来的,不是设计来的”。

很多年前,读了子柳老师的《淘宝技术这十年》。这本书成为了我的架构启蒙书,书中的一句话像种子一样深埋在我的脑海里:“好的架构是进化来的,不是设计来的”

2015年,我加入神州专车订单研发团队,亲历了专车数据层「架构进化」的过程。这次工作经历对我而言非常有启发性,也让我经常感慨:“好的架构果然是一点点进化来的”。

1 单数据库架构

产品初期,技术团队的核心目标是:“快速实现产品需求,尽早对外提供服务”

彼时的专车服务都连同一个 SQLServer 数据库,服务层已经按照业务领域做了一定程度的拆分。

这种架构非常简单,团队可以分开协作,效率也极高。随着专车订单量的不断增长,早晚高峰期,用户需要打车的时候,点击下单后经常无响应。

系统层面来看:

  1. 数据库瓶颈显现。频繁的磁盘操作导致数据库服务器 IO 消耗增加,同时多表关联,排序,分组,非索引字段条件查询也会让 cpu 飙升,最终都会导致数据库连接数激增;
  2. 网关大规模超时。在高并发场景下,大量请求直接操作数据库,数据库连接资源不够用,大量请求处于阻塞状态。

2 SQL优化和读写分离

为了缓解主数据库的压力,很容易就想到的策略:SQL优化。通过性能监控平台和 DBA 同学协作分析出业务慢 SQL ,整理出优化方案:

  1. 合理添加索引;
  2. 减少多表 JOIN 关联,通过程序组装,减少数据库读压力;
  3. 减少大事务,尽快释放数据库连接。

另外一个策略是:读写分离

读写分离的基本原理是让主数据库处理事务性增、改、删操作( INSERT、UPDATE、DELETE),而从数据库处理 SELECT 查询操作。

专车架构团队提供的框架中,支持读写分离,于是数据层架构进化为如下图:

读写分离可以减少主库写压力,同时读从库可水平扩展。当然,读写分离依然有局限性:

  1. 读写分离可能面临主从延迟的问题,订单服务载客流程中对实时性要求较高,因为担心延迟问题,大量操作依然使用主库查询;
  2. 读写分离可以缓解读压力,但是写操作的压力随着业务爆发式的增长并没有很有效的缓解。

3 业务领域分库

虽然应用层面做了优化,数据层也做了读写分离,但主库的压力依然很大。接下来,大家不约而同的想到了业务领域分库,也就是:将数据库按业务领域拆分成不同的业务数据库,每个系统仅访问对应业务的数据库。

业务领域分库可以缓解核心订单库的性能压力,同时也减少系统间的相互影响,提升了系统整体稳定性。

随之而来的问题是:原来单一数据库时,简单的使用 JOIN 就可以满足需求,但拆分后的业务数据库在不同的实例上,就不能跨库使用 JOIN了,因此需要对系统边界重新梳理,业务系统也需要重构

重构重点包含两个部分:

  1. 原来需要 JOIN 关联的查询修改成 RPC 调用,程序中组装数据 ;
  2. 业务表适当冗余字段,通过消息队列或者异构工具同步。

4 缓存和MQ

专车服务中,订单服务是并发量和请求量最高,也是业务中最核心的服务。虽然通过业务领域分库,SQL 优化提升了不少系统性能,但订单数据库的写压力依然很大,系统的瓶颈依然很明显。

于是,订单服务引入了 缓存  MQ 

乘客在用户端点击立即叫车,订单服务创建订单,首先保存到数据库后,然后将订单信息同步保存到缓存中。

在订单的载客生命周期里,订单的修改操作先修改缓存,然后发送消息到 MetaQ ,订单落盘服务消费消息,并判断订单信息是否正常(比如有无乱序),若订单数据无误,则存储到数据库中。

核心逻辑有两点:

  1. 缓存集群中存储最近七天订单详情信息,大量订单读请求直接从缓存获取;
  2. 在订单的载客生命周期里,写操作先修改缓存,通过消息队列异步落盘,这样消息队列可以起到消峰的作用,同样可以降低数据库的压力。

这次优化提升了订单服务的整体性能,也为后来订单服务库分库分表以及异构打下了坚实的基础。

5 从 SQLServer 到 MySQL

业务依然在爆炸增长,每天几十万订单,订单表数据量很快将过亿,数据库天花板迟早会触及。

订单分库分表已成为技术团队的共识。业界很多分库分表方案都是基于 MySQL 数据库,专车技术管理层决定先将订单库整体先从 SQLServer 迁移到 MySQL 。

迁移之前,准备工作很重要 :

  1. SQLServer 和 MySQL 两种数据库语法有一些差异,订单服务必须要适配 MySQL 语法。
  2. 订单 order_id 是主键自增,但在分布式场景中并不合适,需要将订单 id 调整为分布式模式。

当准备工作完成后,才开始迁移。

迁移过程分两部分:历史全量数据迁移 增量数据迁移

历史数据全量迁移主要是 DBA 同学通过工具将订单库同步到独立的 MySQL 数据库。

增量数据迁移:因为 SQLServer 无 binlog 日志概念,不能使用 maxwell 和 canal 等类似解决方案。订单团队重构了订单服务代码,每次订单写操作的时候,会发送一条 MQ 消息到 MetaQ 。为了确保迁移的可靠性,还需要将新库的数据同步到旧库,也就是需要做到双向同步

迁移流程:

  1. 首先订单服务(SQLServer版)发送订单变更消息到 MetaQ ,此时并不开启「旧库消息消费」,让消息先堆积在 MetaQ 里;
  2. 然后开始迁移历史全量数据,当全量迁移完成后,再开启「旧库消息消费」,这样新订单库就可以和旧订单库数据保持同步了;
  3. 开启「新库消息消费」,然后部署订单服务( MySQL 版),此时订单服务有两个版本同时运行,检测数据无误后,逐步增加新订单服务流量,直到老订单服务完全下线。

6 自研分库分表组件

业界分库分表一般有 proxy 和 client 两种流派。

▍ proxy模式


<img style="border-radius: 0.3125em;

box-shadow: 0 2px 4px 0 rgba(34,36,38,.12),0 2px 10px 0 rgba(34,36,38,.08); " 
src="https://oscimg.oschina.net/oscnet/up-2c4725162f13e7e1d738a38b31364ded39d.png">

代理层分片方案业界有 Mycatcobar 等 。

它的优点:应用零改动,和语言无关,可以通过连接共享减少连接数消耗。缺点:因为是代理层,存在额外的时延。

▍ client模式


<img style="border-radius: 0.3125em;

box-shadow: 0 2px 4px 0 rgba(34,36,38,.12),0 2px 10px 0 rgba(34,36,38,.08); " 
src="https://oscimg.oschina.net/oscnet/up-52ed4a8a3839782f4f1ff2f0b8e15b6b705.png">

应用层分片方案业界有 sharding-jdbcTDDL 等。

它的优点:直连数据库,额外开销小,实现简单,轻量级中间件。缺点:无法减少连接数消耗,有一定的侵入性,多数只支持Java语言。

神州架构团队选择自研分库分表组件,采用了 client 模式 ,组件命名:SDDL

订单服务需要引入是 SDDL 的 jar 包,在配置中心配置 数据源信息 sharding key  路由规则 等,订单服务只需要配置一个 datasourceId 即可。

7 分库分表策略

7.1 乘客维度

专车订单数据库的查询主维度是:乘客,乘客端按乘客 user_id 和 订单 order_id 查询频率最高,我们选择 user_id 做为 sharding key ,相同用户的订单数据存储到同一个数据库中。

分库分表组件 SDDL 和阿里开源的数据库中间件 cobar 路由算法非常类似的。

为了便于思维扩展,先简单介绍下 cobar 的分片算法。

假设现在需要将订单表平均拆分到4个分库 shard0 ,shard1 ,shard2 ,shard3 。首先将 [0-1023] 平均分为4个区段:[0-255],[256-511],[512-767],[768-1023],然后对字符串(或子串,由用户自定义)做 hash, hash 结果对1024取模,最终得出的结果 slot 落入哪个区段,便路由到哪个分库。

cobar 的默认路由算法 ,可以和 雪花算法 天然融合在一起, 订单 order_id 使用雪花算法,我们可以将 slot 的值保存在 10位工作机器ID 里。

通过订单 order_id 可以反查出 slot , 就可以定位该用户的订单数据存储在哪个分区里。

Integer getWorkerId(Long orderId) {
 Long workerId = (orderId >> 12) & 0x03ff;
 return workerId.intValue();
}

专车 SDDL 分片算法和 cobar 差异点在于:

  1. cobar 支持最大分片数是1024,而 SDDL 最大支持分库数1024*8=8192,同样分四个订单库,每个分片的 slot 区间范围是2048 ;

  1. 因为要支持8192个分片,雪花算法要做一点微调,雪花算法的10位工作机器修改成13位工作机器,时间戳也调整为:38位时间戳(由某个时间点开始的毫秒数)。

7.2 司机维度

虽然解决了主维度乘客分库分表问题,但专车还有另外一个查询维度,在司机客户端,司机需要查询分配给他的订单信息。

我们已经按照乘客 user_id 作为 sharding key ,若按照司机 driver_id 查询订单的话,需要广播到每一个分库并聚合返回,基于此,技术团队选择将乘客维度的订单数据异构到以司机维度的数据库里。

司机维度的分库分表策略和乘客维度逻辑是一样的,只不过 sharding key 变成了司机 driver_id

异构神器 canal 解析乘客维度四个分库的 binlog ,通过 SDDL 写入到司机维度的四个分库里。

这里大家可能有个疑问:虽然可以异构将订单同步到司机维度的分库里,毕竟有些许延迟,如何保证司机在司机端查询到最新的订单数据呢 ?

缓存和MQ这一小节里提到:缓存集群中存储最近七天订单详情信息,大量订单读请求直接从缓存获取。订单服务会缓存司机和当前订单的映射,这样司机端的大量请求就可以直接缓存中获取,而司机端查询订单列表的频率没有那么高,异构复制延迟在10毫秒到30毫秒之间,在业务上是完全可以接受的。

7.3 运营维度

专车管理后台,运营人员经常需要查询订单信息,查询条件会比较复杂,专车技术团队采用的做法是:订单数据落盘在乘客维度的订单分库之后,通过 canal 把数据同步到Elastic Search。

7.4 小表广播

业务中有一些配置表,存储重要的配置,读多写少。在实际业务查询中,很多业务表会和配置表进行联合数据查询。但在数据库水平拆分后,配置表是无法拆分的。

小表广播的原理是:将小表的所有数据(包括增量更新)自动广播(即复制)到大表的机器上。这样,原来的分布式 JOIN 查询就变成单机本地查询,从而大大提高了效率。

专车场景下,小表广播是非常实用的需求。比如:城市表是非常重要的配置表,数据量非常小,但订单服务,派单服务,用户服务都依赖这张表。

通过 canal 将基础配置数据库城市表同步到订单数据库,派单数据库,用户数据库。

8 平滑迁移

分库分表组件 SDDL 研发完成,并在生产环境得到一定程度的验证后,订单服务从单库 MySQL 模式迁移到分库分表模式条件已经成熟。

迁移思路其实和从 SQLServer 到 MySQL 非常类似。

整体迁移流程:

  1. DBA 同学准备乘客维度的四个分库,司机维度的四个分库 ,每个分库都是最近某个时间点的全量数据;
  2. 八个分库都是全量数据,需要按照分库分表规则删除八个分库的冗余数据 ;
  3. 开启正向同步,旧订单数据按照分库分表策略落盘到乘客维度的分库,通过 canal 将乘客维度分库订单数据异构复制到司机维度的分库中;
  4. 开启反向同步,修改订单应用的数据源配置,重启订单服务,订单服务新创建的订单会落盘到乘客维度的分库,通过 canal 将乘客维度分库订单数据异构到全量订单库以及司机维度的数据库;
  5. 验证数据无误后,逐步更新订单服务的数据源配置,完成整体迁移。

9 数据交换平台

专车订单已完成分库分表 , 很多细节都值得复盘:

  1. 全量历史数据迁移需要 DBA 介入 ,技术团队没有成熟的工具或者产品轻松完成;
  2. 增量数据迁移通过 canal 来实现。随着专车业务的爆发增长,数据库镜像,实时索引构建,分库异构等需求越来越多,虽然canal 非常优秀,但它还是有瑕疵,比如缺失任务控制台,数据源管理能力,任务级别的监控和报警,操作审计等功能。

面对这些问题,架构团队的目标是打造一个平台,满足各种异构数据源之间的实时增量同步和离线全量同步,支撑公司业务的快速发展。

基于这个目标,架构团队自研了 dataLink 用于增量数据同步,深度定制了阿里开源的 dataX 用于全量数据同步。

10 写到最后

专车架构进化之路并非一帆风顺,也有波折和起伏,但一步一个脚印,专车的技术储备越来越深厚。

2017年,瑞幸咖啡在神州优车集团内部孵化,专车的这些技术储备大大提升了瑞幸咖啡技术团队的研发效率,并支撑业务的快速发展。 比如瑞幸咖啡的订单数据库最开始规划的时候,就分别按照用户维度,门店维度各拆分了8个数据库实例,分库分表组件 SDDL 数据交换平台都起到了关键的作用 。

好了,这篇文字就写到这里了。 我们下期见。


如果我的文章对你有所帮助,还请帮忙点赞、在看、转发一下,你的支持会激励我输出更高质量的文章,非常感谢!

如有兴趣,请关注: 勇哥java实战分享

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
消息中间件 存储 缓存
十万订单每秒热点数据架构优化实践深度解析
【11月更文挑战第20天】随着互联网技术的飞速发展,电子商务平台在高峰时段需要处理海量订单,这对系统的性能、稳定性和扩展性提出了极高的要求。尤其是在“双十一”、“618”等大型促销活动中,每秒需要处理数万甚至数十万笔订单,这对系统的热点数据处理能力构成了严峻挑战。本文将深入探讨如何优化架构以应对每秒十万订单级别的热点数据处理,从历史背景、功能点、业务场景、底层原理以及使用Java模拟示例等多个维度进行剖析。
58 8
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
465 7
|
2月前
|
数据采集 搜索推荐 数据管理
数据架构 CDP 是什么?
数据架构 CDP 是什么?
74 2
|
5月前
|
机器学习/深度学习 数据采集 人工智能
揭秘!47页文档拆解苹果智能,从架构、数据到训练和优化
【8月更文挑战第23天】苹果公司发布了一份47页的研究文档,深入解析了其在智能基础语言模型领域的探索与突破。文档揭示了苹果在此领域的雄厚实力,并分享了其独特的混合架构设计,该设计融合了Transformer与RNN的优势,显著提高了模型处理序列数据的效能与表现力。然而,这种架构也带来了诸如权重平衡与资源消耗等挑战。苹果利用海量、多样的高质量数据集训练模型,但确保数据质量及处理噪声仍需克服。此外,苹果采取了自监督与无监督学习相结合的高效训练策略,以增强模型的泛化与稳健性,但仍需解决预训练任务选择及超参数调优等问题。
164 66
|
6月前
|
存储 分布式数据库 数据库
Hbase学习二:Hbase数据特点和架构特点
Hbase学习二:Hbase数据特点和架构特点
95 0
|
4月前
|
存储 搜索推荐 数据库
MarkLogic在微服务架构中的应用:提供服务间通信和数据共享的机制
随着微服务架构的发展,服务间通信和数据共享成为关键挑战。本文介绍MarkLogic数据库在微服务架构中的应用,阐述其多模型支持、索引搜索、事务处理及高可用性等优势,以及如何利用MarkLogic实现数据共享、服务间通信、事件驱动架构和数据分析,提升系统的可伸缩性和可靠性。
60 5
|
3月前
|
存储 大数据 数据处理
洞察未来:数据治理中的数据架构新思维
数据治理中的数据架构新思维对于应对未来挑战、提高数据处理效率、加强数据安全与隐私保护以及促进数据驱动的业务创新具有重要意义。企业需要紧跟时代步伐,不断探索和实践新型数据架构,以洞察未来发展趋势,为企业的长远发展奠定坚实基础。
|
5月前
|
安全 网络安全 数据安全/隐私保护
云原生技术探索:容器化与微服务架构的实践之路网络安全与信息安全:保护数据的关键策略
【8月更文挑战第28天】本文将深入探讨云原生技术的核心概念,包括容器化和微服务架构。我们将通过实际案例和代码示例,展示如何在云平台上实现高效的应用部署和管理。文章不仅提供理论知识,还包含实操指南,帮助开发者理解并应用这些前沿技术。 【8月更文挑战第28天】在数字化时代,网络安全和信息安全是保护个人和企业数据的前线防御。本文将探讨网络安全漏洞的成因、加密技术的应用以及提升安全意识的重要性。文章旨在通过分析网络安全的薄弱环节,介绍如何利用加密技术和提高用户警觉性来构建更为坚固的数据保护屏障。
|
5月前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。
|
5月前
|
机器学习/深度学习 自然语言处理 数据处理

热门文章

最新文章