【数据结构】对比数组链表我发现二叉树的好

简介: 【数据结构】对比数组链表我发现二叉树的好

二叉树简介

为什么需要树这种数据结构 ?


二叉树的概念


树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。

二叉树的子节点分为左节点和右节点

2.png



如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树。


3.png


如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数二


层的叶子节点在右边连续,我们称为完全二叉树

10.png



数组

数组存储方式的分析


优点:通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。 缺点:如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低


画出操作示意图:

4.png



链表

链式存储方式的分析


优点:在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可,


删除效率也很好)。


缺点:在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历)


操作示意图:

5.png



二叉树

树存储方式的分析


能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也


可以保证数据的插入,删除,修改的速度


案例: [7, 3, 10, 1, 5, 9, 12]

6.png



认识树结构

树的常用术语(结合示意图理解:


认识树结构

树的常用术语(结合示意图理解:


1) 节点  


2) 根节点  


3) 父节点  


4) 子节点  


5) 叶子节点 (没有子节点的节点)  6) 节点的权(节点值)  7) 路径(从 root 节点找到该节点的路线)  8) 层  


6) 子树  


7) 树的高度(最大层数)  


8.森林 :多颗子树构成森林

7.png



二叉树遍历的说明

前序遍历: 先输出父节点,再遍历左子树和右子树

中序遍历: 先遍历左子树,再输出父节点,再遍历右子树

后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点

小结: 看输出父节点的顺序,就确定是前序,中序还是后序

二叉树遍历应用实例(前序,中序,后序)

8.png


二叉树遍历代码实例

 public static void main(String[] args){
     //  测试,先创建一颗二叉树
        BinaryTree binaryTree = new BinaryTree();
        heroNode root = new heroNode(1, "宋江");
        heroNode node1 = new heroNode(2, "吴用");
        heroNode node2 = new heroNode(3, "卢俊义");
        heroNode node3 = new heroNode(4, "林冲");
        heroNode node4 = new heroNode(5, "关胜");
        //设置头节点
        binaryTree.setHead(root);
        // 此处我们手动的填补二叉树,之后还会有递归的方式填充二叉树
        root.setLeftNode(node1);
        root.setRightNode(node2);
        node2.setRightNode(node3);
        node2.setLeftNode(node4);
        //测试
            前序遍历
        //binaryTree.PreOrder();
        中序遍历
        //System.out.println();
        //binaryTree.InfixOrder();
        后序遍历
        //System.out.println();
        //binaryTree.PostOrder();
 }    
class BinaryTree {
    //确定根节点
    private heroNode head;
    public void setHead(heroNode head) {
        this.head = head;
    }
    //   前序遍历
    public void PreOrder() {
        if (this.head != null) {
            this.head.PreOrder();
        } else {
            System.out.println("二叉树没有根节点,无法遍历");
        }
    }
    //中序遍历
    public void InfixOrder() {
        if (this.head != null) {
            this.head.infixOrder();
        } else {
            System.out.println("二叉树没有根节点,无法遍历");
        }
    }
    //后续遍历
    public void PostOrder() {
        if (this.head != null) {
            this.head.postOrder();
        } else {
            System.out.println("二叉树没有根节点,无法遍历");
        }
    }
}
class heroNode {
    private int id;
    private String name;
    private heroNode leftNode;
    private heroNode rightNode;
    public heroNode getLeftNode() {
        return leftNode;
    }
    public void setLeftNode(heroNode leftNode) {
        this.leftNode = leftNode;
    }
    public heroNode getRightNode() {
        return rightNode;
    }
    public void setRightNode(heroNode rightNode) {
        this.rightNode = rightNode;
    }
    public heroNode(int id, String name) {
        this.id = id;
        this.name = name;
    }
    public int getId() {
        return id;
    }
    public void setId(int id) {
        this.id = id;
    }
    public String getName() {
        return name;
    }
    @Override
    public String toString() {
        return "heroNode{" +
                "id=" + id +
                ", name='" + name + '\'' +
                '}';
    }
    public void setName(String name) {
        this.name = name;
    }
    //    前序遍历
    public void PreOrder() {
        System.out.println(this);
        if (this.getLeftNode() != null) {
            this.leftNode.PreOrder();
        }
        if (this.getRightNode() != null) {
            this.rightNode.PreOrder();
        }
    }
    //    中序遍历
    public void infixOrder() {
        if (this.leftNode != null) {
            this.leftNode.infixOrder();
        }
        System.out.println(this);
        if (this.rightNode != null) {
            this.rightNode.infixOrder();
        }
    }
    //   后序遍历
    public void postOrder() {
        if (this.leftNode != null) {
            this.leftNode.postOrder();
        }
        if (this.rightNode != null) {
            this.rightNode.postOrder();
        }
        System.out.println(this);
    }
}

二叉树查找思路

请编写前序查找,中序查找和后序查找的方法。

并分别使用三种查找方式,查找 heroNO = 5 的节点

并分析各种查找方式,分别比较了多少次

思路图解

9.png



二叉树查找代码示例

为了方便更好的阅读代码,就把节点和树类的查找代码专门的写出来,后面会有全代码的部分


class BinatyTree{
    //前序查找
    public heroNode preOrderSearch(int no) {
        if (this.head != null) {
            return this.head.PreOrderSearch(no);
        } else {
            return null;
        }
    }
    //中序查找
    public heroNode infixOrderSearch(int no) {
        if (this.head != null) {
            return this.head.infixOrderSearch(no);
        } else {
            return null;
        }
    }
    //后序查找
    public heroNode postOrderSearch(int no) {
        if (this.head != null) {
            return this.head.postOrderSearch(no);
        } else {
            return null;
        }
    }
}
class heroNode{
    //前序查找
    public heroNode preOrderSearch(int no) {
        if (this.head != null) {
            return this.head.PreOrderSearch(no);
        } else {
            return null;
        }
    }
    //中序查找
    public heroNode infixOrderSearch(int no) {
        if (this.head != null) {
            return this.head.infixOrderSearch(no);
        } else {
            return null;
        }
    }
    //后序查找
    public heroNode postOrderSearch(int no) {
        if (this.head != null) {
            return this.head.postOrderSearch(no);
        } else {
            return null;
        }
    }
}

二叉树-删除节点

如果删除的节点是叶子节点,则删除该节点

如果删除的节点是非叶子节点,则删除该子树.

测试,删除掉 5 号叶子节点 和 3 号子树.

思路分析

2.png


有关二叉树的,遍历,查找,删除的全代码

package com.hyc.DataStructure.tree;
/**
 * @projectName: DataStructure
 * @package: com.hyc.DataStructure.tree
 * @className: BinaryTreeDemo
 * @author: 冷环渊 doomwatcher
 * @description: TODO
 * @date: 2022/2/3 16:47
 * @version: 1.0
 */
public class BinaryTreeDemo {
    public static void main(String[] args) {
        //  测试,先创建一颗二叉树
        BinaryTree binaryTree = new BinaryTree();
        heroNode root = new heroNode(1, "宋江");
        heroNode node1 = new heroNode(2, "吴用");
        heroNode node2 = new heroNode(3, "卢俊义");
        heroNode node3 = new heroNode(4, "林冲");
        heroNode node4 = new heroNode(5, "关胜");
        //设置头节点
        binaryTree.setHead(root);
        // 此处我们手动的填补二叉树,之后还会有递归的方式填充二叉树
        root.setLeftNode(node1);
        root.setRightNode(node2);
        node2.setRightNode(node3);
        node2.setLeftNode(node4);
        //测试
            前序遍历
        //binaryTree.PreOrder();
        中序遍历
        //System.out.println();
        //binaryTree.InfixOrder();
        后序遍历
        //System.out.println();
        //binaryTree.PostOrder();
        //System.out.println("前中后查找");
        //System.out.println("开始前序查找");
        //heroNode resNode = binaryTree.preOrderSearch(5);
        //if (resNode != null) {
        //    System.out.printf("找到节点为 no =>%d,名字 name => %s ", resNode.getId(), resNode.getName());
        //} else {
        //    System.out.println("查找失败");
        //}
        //System.out.println("开始中序查找");
        //heroNode resNode = binaryTree.infixOrderSearch(5);
        //if (resNode != null) {
        //    System.out.printf("找到节点为 no =>%d,名字 name => %s ", resNode.getId(), resNode.getName());
        //} else {
        //    System.out.println("查找失败");
        //}
        //System.out.println("开始后序查找");
        //heroNode resNode = binaryTree.postOrderSearch(5);
        //if (resNode != null) {
        //    System.out.printf("找到节点为 no =>%d,名字 name => %s ", resNode.getId(), resNode.getName());
        //} else {
        //    System.out.println("查找失败");
        //}
        //    删除测试
        System.out.println("删除前");
        binaryTree.PreOrder();
        System.out.println("删除后");
        binaryTree.deleteNode(5);
        binaryTree.PreOrder();
    }
}
class BinaryTree {
    //确定根节点
    private heroNode head;
    public void setHead(heroNode head) {
        this.head = head;
    }
    //   前序遍历
    public void PreOrder() {
        if (this.head != null) {
            this.head.PreOrder();
        } else {
            System.out.println("二叉树没有根节点,无法遍历");
        }
    }
    //中序遍历
    public void InfixOrder() {
        if (this.head != null) {
            this.head.infixOrder();
        } else {
            System.out.println("二叉树没有根节点,无法遍历");
        }
    }
    //后续遍历
    public void PostOrder() {
        if (this.head != null) {
            this.head.postOrder();
        } else {
            System.out.println("二叉树没有根节点,无法遍历");
        }
    }
    //前序查找
    public heroNode preOrderSearch(int no) {
        if (this.head != null) {
            return this.head.PreOrderSearch(no);
        } else {
            return null;
        }
    }
    //中序查找
    public heroNode infixOrderSearch(int no) {
        if (this.head != null) {
            return this.head.infixOrderSearch(no);
        } else {
            return null;
        }
    }
    //后序查找
    public heroNode postOrderSearch(int no) {
        if (this.head != null) {
            return this.head.postOrderSearch(no);
        } else {
            return null;
        }
    }
    //    删除节点
    public void deleteNode(int no) {
        if (head != null) {
            if (head.getId() == no) {
                head = null;
                return;
            } else {
                head.deleteNode(no);
            }
        } else {
            System.out.println("空树,无法删除");
        }
    }
}
class heroNode {
    private int id;
    private String name;
    private heroNode leftNode;
    private heroNode rightNode;
    public heroNode getLeftNode() {
        return leftNode;
    }
    public void setLeftNode(heroNode leftNode) {
        this.leftNode = leftNode;
    }
    public heroNode getRightNode() {
        return rightNode;
    }
    public void setRightNode(heroNode rightNode) {
        this.rightNode = rightNode;
    }
    public heroNode(int id, String name) {
        this.id = id;
        this.name = name;
    }
    public int getId() {
        return id;
    }
    public void setId(int id) {
        this.id = id;
    }
    public String getName() {
        return name;
    }
    @Override
    public String toString() {
        return "heroNode{" +
                "id=" + id +
                ", name='" + name + '\'' +
                '}';
    }
    public void setName(String name) {
        this.name = name;
    }
    //    前序遍历
    public void PreOrder() {
        System.out.println(this);
        if (this.getLeftNode() != null) {
            this.leftNode.PreOrder();
        }
        if (this.getRightNode() != null) {
            this.rightNode.PreOrder();
        }
    }
    //    中序遍历
    public void infixOrder() {
        if (this.leftNode != null) {
            this.leftNode.infixOrder();
        }
        System.out.println(this);
        if (this.rightNode != null) {
            this.rightNode.infixOrder();
        }
    }
    //   后序遍历
    public void postOrder() {
        if (this.leftNode != null) {
            this.leftNode.postOrder();
        }
        if (this.rightNode != null) {
            this.rightNode.postOrder();
        }
        System.out.println(this);
    }
    //   前序查找
    public heroNode PreOrderSearch(int no) {
        System.out.println("前序查找");
        //比较当前节点的no 是不是我们要搜索的
        if (this.id == no) {
            return this;
        }
        //要返回的节点
        heroNode resNode = null;
        //  判断左边节点是不是空 如果不是空的话 那么就递归前序查找
        //    如果找到的话 就返回找到的节点
        if (this.leftNode != null) {
            resNode = this.leftNode.PreOrderSearch(no);
        }
        //如果不为null 那么代表左边找到了直接返回即可
        if (resNode != null) {
            return resNode;
        }
        //  判断右边节点是不是空 如果不是空的话 那么就递归前序查找
        //    如果找到的话 就返回找到的节点
        if (this.rightNode != null) {
            resNode = this.rightNode.PreOrderSearch(no);
        }
        return resNode;
    }
    //   中序查找
    public heroNode infixOrderSearch(int no) {
        //要返回的节点
        heroNode resNode = null;
        //  判断左边节点是不是空 如果不是空的话 那么就递归中序查找
        //    如果找到的话 就返回找到的节点
        if (this.leftNode != null) {
            resNode = this.leftNode.infixOrderSearch(no);
        }
        //如果不为null 那么代表左边找到了直接返回即可
        if (resNode != null) {
            return resNode;
        }
        //比较当前节点的no 是不是我们要搜索的
        System.out.println("中序查找");
        if (this.id == no) {
            return this;
        }
        //  判断右边节点是不是空 如果不是空的话 那么就递归中序查找
        //    如果找到的话 就返回找到的节点
        if (this.rightNode != null) {
            resNode = this.rightNode.infixOrderSearch(no);
        }
        return resNode;
    }
    //   后序查找
    public heroNode postOrderSearch(int no) {
        //要返回的节点
        heroNode resNode = null;
        //  判断左边节点是不是空 如果不是空的话 那么就递归后序查找
        //    如果找到的话 就返回找到的节点
        if (this.leftNode != null) {
            resNode = this.leftNode.postOrderSearch(no);
        }
        //如果不为null 那么代表左边找到了直接返回即可
        if (resNode != null) {
            return resNode;
        }
        //  判断右边节点是不是空 如果不是空的话 那么就递归后序查找
        //    如果找到的话 就返回找到的节点
        if (this.rightNode != null) {
            resNode = this.rightNode.postOrderSearch(no);
        }
        //如果不为null 那么代表右边找到了直接返回即可
        if (resNode != null) {
            return resNode;
        }
        System.out.println("后序查找");
        //左右子树,都没有找到,那么就比较当前节点的no 是不是我们要搜索的
        if (this.id == no) {
            return this;
        }
        return resNode;
    }
    //    删除 
    public void deleteNode(int no) {
        //    向左边遍历 如果左边子树有点话就将左边子树置空,如果不是就遍历右边
        if (this.leftNode != null && this.leftNode.id == no) {
            this.leftNode = null;
            return;
        }
        //    向右边遍历 如果右边子树有点话就将左边子树置空,如果左右都没有那么就绪要递归的删除
        if (this.rightNode != null && this.rightNode.id == no) {
            this.rightNode = null;
            return;
        }
        //    如果上面两步都不成功那么我们先向左边递归删除
        if (this.leftNode != null) {
            this.leftNode.deleteNode(no);
        }
        //    如果递归删除左子树也没有成功删除,那么就递归删除右边子树
        if (this.rightNode != null) {
            this.rightNode.deleteNode(no);
        }
    }
}


相关文章
|
16天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
65 8
|
18天前
|
存储 C语言
【数据结构】手把手教你单链表(c语言)(附源码)
本文介绍了单链表的基本概念、结构定义及其实现方法。单链表是一种内存地址不连续但逻辑顺序连续的数据结构,每个节点包含数据域和指针域。文章详细讲解了单链表的常见操作,如头插、尾插、头删、尾删、查找、指定位置插入和删除等,并提供了完整的C语言代码示例。通过学习单链表,可以更好地理解数据结构的底层逻辑,提高编程能力。
45 4
|
1月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
30 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
20天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
20天前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
20 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
23 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
18天前
|
C语言
【数据结构】双向带头循环链表(c语言)(附源码)
本文介绍了双向带头循环链表的概念和实现。双向带头循环链表具有三个关键点:双向、带头和循环。与单链表相比,它的头插、尾插、头删、尾删等操作的时间复杂度均为O(1),提高了运行效率。文章详细讲解了链表的结构定义、方法声明和实现,包括创建新节点、初始化、打印、判断是否为空、插入和删除节点等操作。最后提供了完整的代码示例。
38 0
|
1月前
|
存储
[数据结构] -- 双向循环链表
[数据结构] -- 双向循环链表
22 0
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆