阿里IM技术分享(七):闲鱼IM的在线、离线聊天数据同步机制优化实践

简介: http://www.52im.net/thread-3856-1-1.html

本文由阿里闲鱼技术团队书闲分享,原题“如何有效缩短闲鱼消息处理时长”,有修订和改动,感谢作者的分享。

1、引言

闲鱼技术团队围绕IM这个技术范畴,已经分享了好几篇实践性总结文章,本篇将要分享的是闲鱼IM系统中在线和离线聊天消息数据的同步机制上所遇到的一些问题,以及实践性的解决方案。

cover-opti.png

学习交流:

- 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM

- 开源IM框架源码:https://github.com/JackJiang2011/MobileIMSDK

本文已同步发布于:http://www.52im.net/thread-3856-1-1.html

2、系列文章

本文是系列文章的第7篇,总目录如下:

  1. 阿里IM技术分享(一):企业级IM王者——钉钉在后端架构上的过人之处
  2. 阿里IM技术分享(二):闲鱼IM基于Flutter的移动端跨端改造实践
  3. 阿里IM技术分享(三):闲鱼亿级IM消息系统的架构演进之路
  4. 阿里IM技术分享(四):闲鱼亿级IM消息系统的可靠投递优化实践
  5. 阿里IM技术分享(五):闲鱼亿级IM消息系统的及时性优化实践
  6. 阿里IM技术分享(六):闲鱼亿级IM消息系统的离线推送到达率优化
  7. 阿里IM技术分享(七):闲鱼IM的在线、离线聊天数据同步机制优化实践》(* 本文

3、问题背景

随着用户数的快速增长,闲鱼IM系统也迎来了前所未有的挑战。

历经多年的业务迭代,客户端侧IM的代码已经因为多年的迭代层次结构不足够清晰,之前一些隐藏起来的聊天数据同步问题,也随着用户数的增大而被放大。

这里面的具体流程在于:后台需要同步到用户端侧的数据包,后台会根据数据包的业务类型划分成不同的数据域,数据包在对应域里面存在唯一且连续的编号,每一个数据包发送到端侧并且被成功消费后,端侧会记录当前每一个数据域已经同步过的版本编号,下一次数据同步就以本地数据域的编号开始,不断的同步到客户端。

当然用户不会一直在线等待消息,所以之前端侧采用了推拉结合的方式保证数据的同步。

具体就是:

  • 1)客户端在线时:使用ACCS实时的将最新的数据内容推送到客户端(ACCS是淘宝无线向开发者提供全双工、低延时、高安全的通道服务);
  • 2)客户端从离线状态启动后:根据本地的数据域编号,拉取不在线时候的数据差;
  • 3)当数据获取出现黑洞时:触发数据同步拉取(“黑洞”即指数据包Version不连续的状态)。

4、问题分析

当前的聊天数据同步策略确实是可以基本保障IM的数据同步的,但是也伴随着一些隐含的问题。

这些隐含的问题主要有:

  • 1)短时间密集数据推送时,会快速的触发多次数据域同步。域同步回来的数据如果存在问题,又会触发新一轮的同步,造成网络资源的浪费。冗余数据包/无效的数据内容会占用有效内容的处理资源,又对CPU和内存资源造成浪费;
  • 2)数据域中的数据包客户端是否正常消费,服务端侧无感知,只能被动地根据当前数据域信息返回数据;
  • 3)数据收取/消息数据体解析/存储落库逻辑拆分不够清晰,无法针对性的对某一层的代码拆分替换进行ABTest。

针对上述问题,我们对闲鱼IM进行了分层改造——即抽离数据同步层。这样优化,除了希望以后这个数据的同步内容可以用在IM之外,也希望随着稳定性的增加,赋能其他的业务场景。

接下来的内容,我们重点来看下解决客户端侧闲鱼IM聊天数据同步问题的一些实践思路。

5、优化思路

5.1 分层拆分

对于服务端来说:业务侧产出数据包后,会拼接上当前的数据域信息,然后通过数据同步层将数据推送到端侧。

对于客户端来说:接收到数据包后,会根据当前的数据域信息,来确定需要消费数据包的业务方,确保数据包在数据域内完整连续后,将数据体脱壳后交于业务侧消费,并且应答消费的状况。

数据同步层的抽取:把数据同步中的加壳、脱壳、校验、重试流程封装到一起,可以让上层业务只需要关心自己需要监听的数据域信息,然后当这些数据域更新数据的时候,可以获取到这些数据进行消费,而不再需要关心数据包是否完整。

这样做的话:

  • 1)业务侧只需要关心业务侧对接的协议;
  • 2)数据侧只需要关心数据侧包装的协议;
  • 3)网络层负责真实的数据传输。

整体的架构原理如下:

1.png

总结一下就是:

  • 1)对齐数据层数据传输协议、描述当前数据包体数据域信息;
  • 2)将消息的处理/合并/落库抽离成数据消费者;
  • 3)上下楼依赖抽象化,去除对于具体实现的依赖。

5.2 数据层结构模型

基于对于数据模型剥离和对当下遇见问题的解决方案规整,将数据同步层拆分为下图这样的架构。

2.png

具体的实施思路就是:

  • 1)App启动时建立ACCS长链接服务,保证推推送信道链接,并且根据当前本地数据域信息触发一次数据拉取;
  • 2)数据消费者注册消费者信息和需要监听的数据域信息,这里是一对多的关系;
  • 3)新的数据抵达端侧后,将数据包放到指定的数据域的缓冲池,批量数据归纳结束后,重新出发数据的读取;
  • 4)根据当前数据域优先级弹出最高优的数据包,判断数据域版本是否符合消费者要求,符合则将数据包脱壳后丢给消费者消费,不符合则根据上一次正确的数据包的域信息触发增量的数据域同步拉取;
  • 5)触发数据域同步拉取时,block数据读取,此时通过ACCS触达的数据依旧会在继续归纳到指定的数据域队列中,等待数据域同步拉取结果,将数据包进行排序、去重,合并到对应的数据域队列中。然后重新激活数据读取;
  • 6)数据包体被消费者正确消费后,更新域信息并且通过上行信道告知服务端已经正确处理的数据域信息。

* 数据域同步协议:

Region中携带的数据不必过多,但需将数据包的内容描述清楚,具体是:

  • 1)目标用户的ID,用以确定目标数据包是否正确;
  • 2)数据域ID和优先级信息;
  • 3)当前数据包的域优先级版本。

* 排序策略:

针对于域数据归纳,无论是在写入数据的时候进行排序还是在读取的时候进行查找都需要进行一次排序的操作,时间复杂度最优也是O(logn)级别的。

在实际coding中发现由于在一个数据域里面,数据包的Version信息是连续唯一并且不存在断层的,上一个稳定消费的数据体的Version信息自增就是下一个数据包的Version,所以这里采用了以Versio为主键的Map存储,既降低了时间复杂度,也使得唯一标识的数据包后抵达端侧的包内容可以覆盖之前的包内容。

6、新的问题及解决策略

6.1 多数据来源和唯一数据消费的平衡

每当产生一条针对于当前用户的数据包:

  • 1)如果当前ACCS长链接存在,就会通过ACCS将数据包推送到客户端;
  • 2)如果App切换到后台一段时间,或者直接被杀死,ACCS链接断开,那么只能通过离线推送到用户的通知面板。

所以:每当App切换到活跃状态,都需要根据当前本地存储的数据域信息从后台触发一次数据同步。

数据包触达到客户端侧的来源主要是ACCS长链接的推送和域同步时的拉取,但是数据包的消费是根据数据域的监听划分的唯一消费者,也就是同一时间内只能消费一个数据包。

在压力测试中:当后台短时间内密集的将数据包通过ACCS推送到端侧时,端侧接收到的数据包并不有序,不连续的数据包域版本又会触发新的数据域同步,导致同样的一份数据包会通过两个不同的渠道多次的触达到端侧,浪费了不必要的流量。

当数据域同步时:这个时间节点产生的新数据包也会推送到端侧,数据体有效,并且需要被正确的消费。

针对上述这些问题的解决策略:

即在数据消费和数据获取中间装载一个数据中间层,当触发数据域同步的时候block数据的读取并且ACCS推送下来的数据包会被存放在一个数据的中转站里面,当数据域同步拉取的数据回来后,对数据进行合并后再重启数据读取流程。

6.2 数据域优先级

需要推送到客户端侧的数据包,根据业务的不同优先级也有不同的划分。

用户和用户的聊天产生的数据包会比运营类的消息的数据包优先级要高一些,所以要当多优先级的数据包快速的抵达端侧时,高优先级数据域的数据包需要被优先消费,而数据域的优先级也是需要动态调整,需要不断变换的优先级策略。

针对这个问题的解决策略:

不同的数据域,产生不同的数据队列,高优队列里面的数据包会被优先读取消费。

每一个数据包体中带回的数据域信息,都可以标注当前的数据域优先级,当数据域优先级发生变化的时候,调整数据包消费优先级策略。

7、优化后的效果

除去结构上分层梳理,使得数据同步层和依赖的服务内容可便捷解耦/每一个环节可插拔之外,数据同步中对于消息消费时长/流量节省,压力测试场景下优化效果更加明显。

在“500ms内100条全乱序数据包推送”压力测试场景下:

  • 1)消息处理时长(接收-上屏)缩短 31%;
  • 2)流量损耗(最终拉取到端侧数据包累积大小)降低35%。

8、后续的优化计划

8.1 数据同步层能力提升

数据同步侧的目标,既要保证数据包完整的到达端侧,又要在保证稳定性的前提下尽可能的减少数据的拉取,使得每一次数据的获取都有效。

后续数据同步层会着手于有效数据率和到达率进行更进一步的优化。

针对不同的场景,动态智能调整数据同步的优先级策略。

阻塞式长链接推送,保证同一时间只存在推模式或者拉模式,进一步减少冗余数据包的推送。

8.2 IM端侧整体架构升级

升级数据同步层策略主要还是要提升IM的能力,将数据同步分层后,接下来就是将消息的处理流程化,对每一个流程都可监控可回溯,提升IM数据包的正确解析存储和落库率。

细化一下就是:

  • 1)在数据来源侧剥离开后,后续对IM的整改也会逐步的将消息的处理分层剥离;
  • 2)消息处理关键节点的流程式上报、建立完整的监控体系,让问题发现先于用户舆情;
  • 3)消息完整性的动态自检,最小化数据补偿补全。

9、参考资料

[1] IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?

[2] IM群聊消息如此复杂,如何保证不丢不重?

[3] 一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践

[4] 一套亿级用户的IM架构技术干货(下篇):可靠性、有序性、弱网优化等

[5] 从新手到专家:如何设计一套亿级消息量的分布式IM系统

[6] 融云技术分享:全面揭秘亿级IM消息的可靠投递机制

[7] 移动端IM中大规模群消息的推送如何保证效率、实时性?

[8] 现代IM系统中聊天消息的同步和存储方案探讨

[9] 新手入门一篇就够:从零开发移动端IM

[10] IM消息送达保证机制实现(一):保证在线实时消息的可靠投递

[11] IM消息送达保证机制实现(二):保证离线消息的可靠投递

[12] 零基础IM开发入门(四):什么是IM系统的消息时序一致性?

[13] IM开发干货分享:我是如何解决大量离线消息导致客户端卡顿的

(本文已同步发布于:http://www.52im.net/thread-3856-1-1.html

目录
相关文章
|
2月前
|
canal 消息中间件 关系型数据库
Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
【9月更文挑战第1天】Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
621 4
|
4月前
|
存储 数据库
zookeeper 集群环境搭建及集群选举及数据同步机制
zookeeper 集群环境搭建及集群选举及数据同步机制
72 2
|
3月前
|
canal 关系型数据库 MySQL
"揭秘阿里数据同步黑科技Canal:从原理到实战,手把手教你玩转MySQL数据秒级同步,让你的数据处理能力瞬间飙升,成为技术界的新晋网红!"
【8月更文挑战第18天】Canal是一款由阿里巴巴开源的高性能数据同步系统,它通过解析MySQL的增量日志(Binlog),提供低延迟、可靠的数据订阅和消费功能。Canal模拟MySQL Slave与Master间的交互协议来接收并解析Binary Log,支持数据的增量同步。配置简单直观,包括Server和Instance两层配置。在实战中,Canal可用于数据库镜像、实时备份等多种场景,通过集成Canal Client可实现数据的消费和处理,如更新缓存或写入消息队列。
742 0
|
4月前
|
分布式计算 关系型数据库 数据处理
美柚与MaxCompute的数据同步架构设计与实践
数据处理与分析 一旦数据同步到MaxCompute后,就可以使用MaxCompute SQL或者MapReduce进行复杂的数据处理和分析。
|
4月前
|
分布式计算 关系型数据库 MySQL
MySQL超时参数优化与DataX高效数据同步实践
通过合理设置MySQL的超时参数,可以有效地提升数据库的稳定性和性能。而DataX作为一种高效的数据同步工具,可以帮助企业轻松实现不同数据源之间的数据迁移。无论是优化MySQL参数还是使用DataX进行数据同步,都需要根据具体的应用场景来进行细致的配置和测试,以达到最佳效果。
|
5月前
|
边缘计算 JSON 网络协议
移动端IM开发者必读(三):爱奇艺移动端跨国弱网通信的优化实践
本次分享的文章内容,基于爱奇艺面向全球用户推出的国际版,在海外跨国网络环境复杂的前提下,针对性地做了一系列弱网优化实践,取得了不错的效果,在此总结分享我们的一些做法和优化思路,希望对你有所帮助。
72 1
|
6月前
|
Rust 监控 JavaScript
抖音技术分享:飞鸽IM桌面端基于Rust语言进行重构的技术选型和实践总结
本文将介绍飞鸽IM前端团队如何结合Rust对飞鸽客户端接待能力进行的技术提升,一步步从概念验证、路径分解到分工开发,再到最后上线收益论证,并分享了其中遇到的技术挑战与经验总结等。
159 1
|
6月前
|
存储 NoSQL Redis
陌陌技术分享:陌陌IM在后端KV缓存架构上的技术实践
在本文中,陌陌数据库负责人冀浩东将聚焦探讨陌陌的 KV 系统架构选型思路,深入解析如何进行此类系统的甄选决策,同时进一步分享陌陌团队在采用 OceanBase(OBKV)过程中所经历的探索与实践经验。
144 0
|
6月前
|
机器学习/深度学习 自然语言处理 机器人
【Tensorflow+自然语言处理+LSTM】搭建智能聊天客服机器人实战(附源码、数据集和演示 超详细)
【Tensorflow+自然语言处理+LSTM】搭建智能聊天客服机器人实战(附源码、数据集和演示 超详细)
732 10
|
6月前
|
自然语言处理 算法 数据库
【JavaScript+自然语言处理+HTML+CSS】实现Web端的智能聊天问答客服实战(附源码 超详细必看)
【JavaScript+自然语言处理+HTML+CSS】实现Web端的智能聊天问答客服实战(附源码 超详细必看)
120 0

热门文章

最新文章