性能测试:自建数据库与RDS性能对比SQL Server案例排查分析

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
简介: 近期经常遇到用户将自建数据库与RDS进行对比,简单的对比结果是自建库比RDS实例查询快。我们这里来看看一个实例,有一家物流公司,刚开始使用RDS SQL Server数据库,发现通过ECS访问RDS实例,执行语句需要60s左右,但是访问ECS本地自建库只需要2-3s。那么RDS是否是真的不如自建数据库呢? 接下来,我们来探讨对比自建库和RDS的正确姿势,如何公平地对比自建库和RDS的性能。对比自建
近期经常遇到用户将自建数据库与RDS进行对比,简单的对比结果是自建库比RDS实例查询快。我们这里来看看一个实例,有一家物流公司,刚开始使用RDS SQL Server数据库,发现通过ECS访问RDS实例,执行语句需要60s左右,但是访问ECS本地自建库只需要2-3s。那么RDS是否是真的不如自建数据库呢? 接下来,我们来探讨对比自建库和RDS的正确姿势,如何公平地对比自建库和RDS的性能。

对比自建库和RDS的语句执行性能,下面这些因素必须都考虑到:

1. 可用区和网络链路。

可用区、网络链路的分析参考 性能测试:自建数据库对比RDS中应当注意的地方即可,这篇文章做了深刻的分析。如果需要验证网络因素,可以在RDS中开启profiler, 并且同时在客户端抓取网络包,对比RDS中执行结束的时间以及网络包中返回结果的时间, 时间差异较大,说明网络传输有延迟。

针对RDS SQL Server 2012实例,可以开启SQL Server Profiler, 抓取RPC:Completed, SQL:StmtStarting, SQL:StmtCompleted, SQL:BatchStarting和SQL:BatchCompleted这几个事件。 

针对RDS SQL Server 2008 R2实例,暂不支持开启SQL Server Profiler, 可以通过下面语句查询近期执行的语句,及其start_time和total_elapased_time 。total_elapased_time指请求到达SQL Server后执行该语句总共消耗的时间(单位ms)。

2. 实例参数配置。

MySQL实例需要关注的参数比较多,详细的分析和描述参考 性能测试:自建数据库对比RDS中应当注意的地方
SQL Server实例需要关注的参数主要有fill factor (%),max degree of parallelism和max server memory (MB)。
Fill Factor(%):
这是一个用于调优数据存储和性能的server_side参数,当创建或者重建索引时,该值可以确定每个叶级页上要填充数据的空间百分比,以保留一些剩余空间作为以后扩展索引的可用空间。
Max Degree of Parallism(MaxDOP):
限制并行计划执行时所用的处理器数量,即限制语句的并行度。
Max Server Memory(MB):
设置buffer pool获取的内存的上限。

3. 资源等待或者阻塞情况

两个环境中,语句执行过程中,需要对比,是否有等待和阻塞情况发生。
查看等待情况:
WITH [Waits] AS
    (SELECT
        [wait_type],
        [wait_time_ms] / 1000.0 AS [WaitS],
        ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
        [signal_wait_time_ms] / 1000.0 AS [SignalS],
        [waiting_tasks_count] AS [WaitCount],
       100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
        ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
    FROM sys.dm_os_wait_stats
    WHERE [wait_type] NOT IN (
        N'BROKER_EVENTHANDLER', N'BROKER_RECEIVE_WAITFOR',
        N'BROKER_TASK_STOP', N'BROKER_TO_FLUSH',
        N'BROKER_TRANSMITTER', N'CHECKPOINT_QUEUE',
        N'CHKPT', N'CLR_AUTO_EVENT',
        N'CLR_MANUAL_EVENT', N'CLR_SEMAPHORE',
  -- Maybe uncomment these four if you have mirroring issues
        N'DBMIRROR_DBM_EVENT', N'DBMIRROR_EVENTS_QUEUE',
        N'DBMIRROR_WORKER_QUEUE', N'DBMIRRORING_CMD',
 
        N'DIRTY_PAGE_POLL', N'DISPATCHER_QUEUE_SEMAPHORE',
        N'EXECSYNC', N'FSAGENT',
        N'FT_IFTS_SCHEDULER_IDLE_WAIT', N'FT_IFTSHC_MUTEX',
 
        -- Maybe uncomment these six if you have AG issues
        N'HADR_CLUSAPI_CALL', N'HADR_FILESTREAM_IOMGR_IOCOMPLETION',
        N'HADR_LOGCAPTURE_WAIT', N'HADR_NOTIFICATION_DEQUEUE',
        N'HADR_TIMER_TASK', N'HADR_WORK_QUEUE',
 
  N'KSOURCE_WAKEUP', N'LAZYWRITER_SLEEP',
        N'LOGMGR_QUEUE', N'MEMORY_ALLOCATION_EXT',
        N'ONDEMAND_TASK_QUEUE',
        N'PREEMPTIVE_XE_GETTARGETSTATE',
        N'PWAIT_ALL_COMPONENTS_INITIALIZED',
        N'PWAIT_DIRECTLOGCONSUMER_GETNEXT',
        N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP', N'QDS_ASYNC_QUEUE',
        N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP',
        N'QDS_SHUTDOWN_QUEUE', N'REDO_THREAD_PENDING_WORK',
        N'REQUEST_FOR_DEADLOCK_SEARCH', N'RESOURCE_QUEUE',
        N'SERVER_IDLE_CHECK', N'SLEEP_BPOOL_FLUSH',
        N'SLEEP_DBSTARTUP', N'SLEEP_DCOMSTARTUP',
        N'SLEEP_MASTERDBREADY', N'SLEEP_MASTERMDREADY',
        N'SLEEP_MASTERUPGRADED', N'SLEEP_MSDBSTARTUP',
        N'SLEEP_SYSTEMTASK', N'SLEEP_TASK',
        N'SLEEP_TEMPDBSTARTUP', N'SNI_HTTP_ACCEPT',
        N'SP_SERVER_DIAGNOSTICS_SLEEP', N'SQLTRACE_BUFFER_FLUSH',
        N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP',
  N'SQLTRACE_WAIT_ENTRIES', N'WAIT_FOR_RESULTS',
        N'WAITFOR', N'WAITFOR_TASKSHUTDOWN',
        N'WAIT_XTP_RECOVERY',
        N'WAIT_XTP_HOST_WAIT', N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG',
        N'WAIT_XTP_CKPT_CLOSE', N'XE_DISPATCHER_JOIN',
        N'XE_DISPATCHER_WAIT', N'XE_TIMER_EVENT')
    AND [waiting_tasks_count] > 0
    )
SELECT
   MAX ([W1].[wait_type]) AS [WaitType],
    CAST (MAX ([W1].[WaitS]) AS DECIMAL (16,2)) AS [Wait_S],
    CAST (MAX ([W1].[ResourceS]) AS DECIMAL (16,2)) AS [Resource_S],
    CAST (MAX ([W1].[SignalS]) AS DECIMAL (16,2)) AS [Signal_S],
    MAX ([W1].[WaitCount]) AS [WaitCount],
    CAST (MAX ([W1].[Percentage]) AS DECIMAL (5,2)) AS [Percentage],
    CAST ((MAX ([W1].[WaitS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgWait_S],
    CAST ((MAX ([W1].[ResourceS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgRes_S],
    CAST ((MAX ([W1].[SignalS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgSig_S],
    CAST ('https://www.sqlskills.com/help/waits/' + MAX ([W1].[wait_type]) as XML) AS [Help/Info URL]
FROM [Waits] AS [W1]

INNER JOIN [Waits] AS [W2]
    ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [W1].[RowNum]
HAVING SUM ([W2].[Percentage]) - MAX( [W1].[Percentage] ) < 95; -- percentage threshold
GO

 查看阻塞情况,参考RDS for SQL Server 阻塞问题处理方法

4. 两个环境中索引碎片率和统计信息是否一致。

检查索引碎片率语句如下:
SELECT dbschemas.[name] as 'Schema',
dbtables.[name] as 'Table',
dbindexes.[name] as 'Index',
indexstats.avg_fragmentation_in_percent,
indexstats.page_count
FROM sys.dm_db_index_physical_stats (DB_ID(), NULL, NULL, NULL, NULL) AS indexstats
INNER JOIN sys.tables dbtables on dbtables.[object_id] = indexstats.[object_id]
INNER JOIN sys.schemas dbschemas on dbtables.[schema_id] = dbschemas.[schema_id]
INNER JOIN sys.indexes AS dbindexes ON dbindexes.[object_id] = indexstats.[object_id]
AND indexstats.index_id = dbindexes.index_id
WHERE indexstats.database_id = DB_ID()
ORDER BY indexstats.avg_fragmentation_in_percent desc


索引碎片率大,影响查询的速度。如果索引碎片率在5%-30#之间,推荐重组索引;如果碎片率大于30%,推荐重建索引。

检查统计信息语句如下:

SELECT t.name TableName, s.[name] StatName, STATS_DATE(t.object_id,s.[stats_id]) LastUpdated 
FROM sys.[stats] AS s JOIN sys.[tables] AS t ON [s].[object_id] = [t].[object_id] WHERE t.type = 'u'


如果发现RDS中统计信息比自建库要老旧,可以手动更新下统计信息。 防止由于统计信息老旧,造成SQL  Server生成不准确的执行计划,降低执行效率。

5. 高可用性架构

RDS作为一个公共的关系数据库服务,首要是保证稳定高可用,高安全,保证用户使用的是既安全又稳定的服务。然后才是高性能。
RDS SQL Server为了保证主备数据的一致性,采用的是High Safety同步模式,相对于High Performance 模式,性能有所牺牲,但是增强了高可用性,保护了数据。
同时, RDS 还提供多可用区主备实例,双节点在不同机房,更进一步保证了高可用性和安全性。


问题排查:
1. RDS实例的内存配置比本地高;
2. 网络延迟不大;
3. RDS的MAXDOP值是2,而ECS自建实例是默认值,即并行语句可以申请尽可能多的并行线程。
通过执行计划看出,RDS中查询语句的并行度是2,而自建库中查询语句的并行度是8,RDS中执行速度自然没有自建库快。
1

2
解决方案:
1. 上述我们分析到,RDS的配置实际比自建库高,那么可以在RDS 实例控制台的参数设置中,增加max degree of parallelism值来提升并行度。
2. 通过执行计划,还发现用户表中有Missing Index。 在RDS添加了Missing Index后,查询性能有大幅度提升,即使并行度为2,也可以在5s执行完毕。
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
25天前
|
SQL 存储 关系型数据库
如何巧用索引优化SQL语句性能?
本文从索引角度探讨了如何优化MySQL中的SQL语句性能。首先介绍了如何通过查看执行时间和执行计划定位慢SQL,并详细解析了EXPLAIN命令的各个字段含义。接着讲解了索引优化的关键点,包括聚簇索引、索引覆盖、联合索引及最左前缀原则等。最后,通过具体示例展示了索引如何提升查询速度,并提供了三层B+树的存储容量计算方法。通过这些技巧,可以帮助开发者有效提升数据库查询效率。
39 2
|
2月前
|
SQL 关系型数据库 MySQL
MySQL如何排查和删除重复数据
该文章介绍了在MySQL中如何排查和删除重复数据的方法,包括通过组合字段生成唯一标识符以及使用子查询和聚合函数来定位并删除重复记录的具体步骤。
135 2
|
21天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1585 14
|
8天前
|
存储 关系型数据库 MySQL
基于案例分析 MySQL 权限认证中的具体优先原则
【10月更文挑战第26天】本文通过具体案例分析了MySQL权限认证中的优先原则,包括全局权限、数据库级别权限和表级别权限的设置与优先级。全局权限优先于数据库级别权限,后者又优先于表级别权限。在权限冲突时,更严格的权限将被优先执行,确保数据库的安全性与资源合理分配。
|
19天前
|
SQL 监控 数据库
慢SQL对数据库写入性能的影响及优化技巧
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生显著的不利影响
|
22天前
|
SQL 关系型数据库 PostgreSQL
遇到SQL 子查询性能很差?其实可以这样优化
遇到SQL 子查询性能很差?其实可以这样优化
67 2
|
25天前
|
SQL 关系型数据库 MySQL
MySQL 更新1000万条数据和DDL执行时间分析
MySQL 更新1000万条数据和DDL执行时间分析
54 4
|
23天前
|
SQL Oracle 关系型数据库
Oracle SQL:了解执行计划和性能调优
Oracle SQL:了解执行计划和性能调优
36 1
|
23天前
|
SQL 自然语言处理 关系型数据库
Vanna使用ollama分析本地MySQL数据库
这篇文章详细介绍了如何使用Vanna结合Ollama框架来分析本地MySQL数据库,实现自然语言查询功能,包括环境搭建和配置流程。
123 0
|
9天前
|
SQL 数据库 开发者
8种SQL编写陷阱:性能杀手还是团队乐趣?
【10月更文挑战第17天】记住,一个好的开发者不仅要知道如何编写代码,还要知道如何编写高效的代码。
11 0