PostgreSQL 百万级每秒的流式实时统计应用

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介:

PipelineDB是基于PostgreSQL研发的一种流式关系数据库(0.8.1基于9.4.4),这种数据库的特点是自动处理流式数据,不存储原始数据,只存储处理后的数据,所以非常适合当下流行的实时流式数据处理,例如网站流量统计,IT服务的监控统计,APPStore的浏览统计等等。

http://www.postgresql.org/about/news/1596/
PipelineDB, an open-source relational streaming-SQL database, publicly released version (0.7.7) today and made the product available as open-source via their website and GitHub. PipelineDB is based on, and is wire compatible with, PostgreSQL 9.4 and has added functionality including continuous SQL queries, probabilistic data structures, sliding windowing, and stream-table joins. For a full description of PipelineDB and its capabilities see their technical documentation.

PipelineDB’s fundamental abstraction is what is called a continuous view. These are much like regular SQL views, except that their defining SELECT queries can include streams as a source to read from. The most important property of continuous views is that they only store their output in the database. That output is then continuously updated incrementally as new data flows through streams, and raw stream data is discarded once all continuous views have read it. Let's look at a canonical example:

   CREATE CONTINUOUS VIEW v AS SELECT COUNT(*) FROM stream
Only one row would ever physically exist in PipelineDB for this continuous view, and its value would simply be incremented for each new event ingested.

For more information on PipelineDB as a company, product and for examples and benefits, please check out their first blog post on their new website.

例子:
创建动态流视图,不需要对表进行定义,太棒了,这类似活生生的NoSQL。

pipeline=# CREATE CONTINUOUS VIEW v0 AS SELECT COUNT(*) FROM stream;  
CREATE CONTINUOUS VIEW
pipeline=# CREATE CONTINUOUS VIEW v1 AS SELECT COUNT(*) FROM stream;
CREATE CONTINUOUS VIEW

激活流视图

pipeline=# ACTIVATE;
ACTIVATE 2

往流写入数据

pipeline=# INSERT INTO stream (x) VALUES (1);
INSERT 0 1
pipeline=# SET stream_targets TO v0;
SET
pipeline=# INSERT INTO stream (x) VALUES (1);
INSERT 0 1
pipeline=# SET stream_targets TO DEFAULT;
SET
pipeline=# INSERT INTO stream (x) VALUES (1);
INSERT 0 1
-- 如果不想接收流数据了,停止即可
pipeline=# DEACTIVATE;
DEACTIVATE 2

查询流视图

pipeline=# SELECT count FROM v0;
 count
-------
     3
(1 row)
pipeline=# SELECT count FROM v1;
 count
-------
     2
(1 row)
pipeline=#

在本地虚拟机进行试用
安装

[root@digoal soft_bak]# rpm -ivh pipelinedb-0.8.1-centos6-x86_64.rpm 
Preparing...                ########################################### [100%]
   1:pipelinedb             ########################################### [100%]
/sbin/ldconfig: /opt/gcc4.9.3/lib/libstdc++.so.6.0.20-gdb.py is not an ELF file - it has the wrong magic bytes at the start.

/sbin/ldconfig: /opt/gcc4.9.3/lib64/libstdc++.so.6.0.20-gdb.py is not an ELF file - it has the wrong magic bytes at the start.


    ____  _            ___            ____  ____
   / __ \(_)___  ___  / (_)___  ___  / __ \/ __ )
  / /_/ / / __ \/ _ \/ / / __ \/ _ \/ / / / __  |
 / ____/ / /_/ /  __/ / / / / /  __/ /_/ / /_/ /
/_/   /_/ .___/\___/_/_/_/ /_/\___/_____/_____/
       /_/

PipelineDB successfully installed. To get started, initialize a
database directory:

pipeline-init -D <data directory>

where <data directory> is a nonexistent directory where you'd
like all of your database files to live. 

You can find the PipelineDB documentation at:

http://docs.pipelinedb.com

配置

[root@digoal soft_bak]# cd /usr/lib/pipelinedb
[root@digoal pipelinedb]# ll
total 16
drwxr-xr-x 2 root root 4096 Oct 15 10:47 bin
drwxr-xr-x 5 root root 4096 Oct 15 10:47 include
drwxr-xr-x 6 root root 4096 Oct 15 10:47 lib
drwxr-xr-x 4 root root 4096 Oct 15 10:47 share

[root@digoal pipelinedb]# useradd pdb
[root@digoal pipelinedb]# vi /home/pdb/.bash_profile
# add by digoal
export PS1="$USER@`/bin/hostname -s`-> "
export PGPORT=1953
export PGDATA=/data01/pg_root_1953
export LANG=en_US.utf8
export PGHOME=/usr/lib/pipelinedb
export LD_LIBRARY_PATH=$PGHOME/lib:/lib64:/usr/lib64:/usr/local/lib64:/lib:/usr/lib:/usr/local/lib:$LD_LIBRARY_PATH
export DATE=`date +"%Y%m%d%H%M"`
export PATH=$PGHOME/bin:$PATH:.
export MANPATH=$PGHOME/share/man:$MANPATH
export PGHOST=$PGDATA
export PGDATABASE=pipeline
export PGUSER=postgres
alias rm='rm -i'
alias ll='ls -lh'
unalias vi

[root@digoal pipelinedb]# mkdir /data01/pg_root_1953
[root@digoal pipelinedb]# chown pdb:pdb /data01/pg_root_1953
[root@digoal pipelinedb]# chmod 700 /data01/pg_root_1953

[root@digoal pipelinedb]# su - pdb
pdb@digoal-> which psql
/usr/lib/pipelinedb/bin/psql

初始化数据库

pdb@digoal-> psql -V
psql (PostgreSQL) 9.4.4

pdb@digoal-> cd /usr/lib/pipelinedb/bin/
pdb@digoal-> ll
total 13M
-rwxr-xr-x 1 root root  62K Sep 18 01:01 clusterdb
-rwxr-xr-x 1 root root  62K Sep 18 01:01 createdb
-rwxr-xr-x 1 root root  66K Sep 18 01:01 createlang
-rwxr-xr-x 1 root root  63K Sep 18 01:01 createuser
-rwxr-xr-x 1 root root  44K Sep 18 01:02 cs2cs
-rwxr-xr-x 1 root root  58K Sep 18 01:01 dropdb
-rwxr-xr-x 1 root root  66K Sep 18 01:01 droplang
-rwxr-xr-x 1 root root  58K Sep 18 01:01 dropuser
-rwxr-xr-x 1 root root 776K Sep 18 01:01 ecpg
-rwxr-xr-x 1 root root  28K Sep 18 00:57 gdaladdo
-rwxr-xr-x 1 root root  79K Sep 18 00:57 gdalbuildvrt
-rwxr-xr-x 1 root root 1.3K Sep 18 00:57 gdal-config
-rwxr-xr-x 1 root root  33K Sep 18 00:57 gdal_contour
-rwxr-xr-x 1 root root 188K Sep 18 00:57 gdaldem
-rwxr-xr-x 1 root root  74K Sep 18 00:57 gdalenhance
-rwxr-xr-x 1 root root 131K Sep 18 00:57 gdal_grid
-rwxr-xr-x 1 root root  83K Sep 18 00:57 gdalinfo
-rwxr-xr-x 1 root root  90K Sep 18 00:57 gdallocationinfo
-rwxr-xr-x 1 root root  42K Sep 18 00:57 gdalmanage
-rwxr-xr-x 1 root root 236K Sep 18 00:57 gdal_rasterize
-rwxr-xr-x 1 root root  25K Sep 18 00:57 gdalserver
-rwxr-xr-x 1 root root  77K Sep 18 00:57 gdalsrsinfo
-rwxr-xr-x 1 root root  49K Sep 18 00:57 gdaltindex
-rwxr-xr-x 1 root root  33K Sep 18 00:57 gdaltransform
-rwxr-xr-x 1 root root 158K Sep 18 00:57 gdal_translate
-rwxr-xr-x 1 root root 168K Sep 18 00:57 gdalwarp
-rwxr-xr-x 1 root root  41K Sep 18 01:02 geod
-rwxr-xr-x 1 root root 1.3K Sep 18 00:51 geos-config
lrwxrwxrwx 1 root root    4 Oct 15 10:47 invgeod -> geod
lrwxrwxrwx 1 root root    4 Oct 15 10:47 invproj -> proj
-rwxr-xr-x 1 root root  20K Sep 18 01:02 nad2bin
-rwxr-xr-x 1 root root 186K Sep 18 00:57 nearblack
-rwxr-xr-x 1 root root 374K Sep 18 00:57 ogr2ogr
-rwxr-xr-x 1 root root  77K Sep 18 00:57 ogrinfo
-rwxr-xr-x 1 root root 283K Sep 18 00:57 ogrlineref
-rwxr-xr-x 1 root root  47K Sep 18 00:57 ogrtindex
-rwxr-xr-x 1 root root  30K Sep 18 01:01 pg_config
-rwxr-xr-x 1 root root  30K Sep 18 01:01 pg_controldata
-rwxr-xr-x 1 root root  33K Sep 18 01:01 pg_isready
-rwxr-xr-x 1 root root  39K Sep 18 01:01 pg_resetxlog
-rwxr-xr-x 1 root root 183K Sep 18 01:02 pgsql2shp
lrwxrwxrwx 1 root root    4 Oct 15 10:47 pipeline -> psql
-rwxr-xr-x 1 root root  74K Sep 18 01:01 pipeline-basebackup
lrwxrwxrwx 1 root root    9 Oct 15 10:47 pipeline-config -> pg_config
-rwxr-xr-x 1 root root  44K Sep 18 01:01 pipeline-ctl
-rwxr-xr-x 1 root root 355K Sep 18 01:01 pipeline-dump
-rwxr-xr-x 1 root root  83K Sep 18 01:01 pipeline-dumpall
-rwxr-xr-x 1 root root 105K Sep 18 01:01 pipeline-init
-rwxr-xr-x 1 root root  50K Sep 18 01:01 pipeline-receivexlog
-rwxr-xr-x 1 root root  56K Sep 18 01:01 pipeline-recvlogical
-rwxr-xr-x 1 root root 153K Sep 18 01:01 pipeline-restore
-rwxr-xr-x 1 root root 6.2M Sep 18 01:01 pipeline-server
lrwxrwxrwx 1 root root   15 Oct 15 10:47 postmaster -> pipeline-server
-rwxr-xr-x 1 root root  49K Sep 18 01:02 proj
-rwxr-xr-x 1 root root 445K Sep 18 01:01 psql
-rwxr-xr-x 1 root root 439K Sep 18 01:02 raster2pgsql
-rwxr-xr-x 1 root root  62K Sep 18 01:01 reindexdb
-rwxr-xr-x 1 root root 181K Sep 18 01:02 shp2pgsql
-rwxr-xr-x 1 root root  27K Sep 18 00:57 testepsg
-rwxr-xr-x 1 root root  63K Sep 18 01:01 vacuumdb

pdb@digoal-> pipeline-init -D $PGDATA -U postgres -E UTF8 --locale=C -W
pdb@digoal-> cd $PGDATA
pdb@digoal-> ll
total 108K
drwx------ 5 pdb pdb 4.0K Oct 15 10:57 base
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 global
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_clog
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_dynshmem
-rw------- 1 pdb pdb 4.4K Oct 15 10:57 pg_hba.conf
-rw------- 1 pdb pdb 1.6K Oct 15 10:57 pg_ident.conf
drwx------ 4 pdb pdb 4.0K Oct 15 10:57 pg_logical
drwx------ 4 pdb pdb 4.0K Oct 15 10:57 pg_multixact
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_notify
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_replslot
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_serial
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_snapshots
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_stat
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_stat_tmp
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_subtrans
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_tblspc
drwx------ 2 pdb pdb 4.0K Oct 15 10:57 pg_twophase
-rw------- 1 pdb pdb    4 Oct 15 10:57 PG_VERSION
drwx------ 3 pdb pdb 4.0K Oct 15 10:57 pg_xlog
-rw------- 1 pdb pdb   88 Oct 15 10:57 pipelinedb.auto.conf
-rw------- 1 pdb pdb  23K Oct 15 10:57 pipelinedb.conf

和流处理相关的参数,例如设置内存大小,是否同步,合并的batch,工作进程数等等。

pipelinedb.conf
#------------------------------------------------------------------------------
# CONTINUOUS VIEW OPTIONS
#------------------------------------------------------------------------------

# size of the buffer for storing unread stream tuples
#tuple_buffer_blocks = 128MB

# synchronization level for combiner commits; off, local, remote_write, or on
#continuous_query_combiner_synchronous_commit = off

# maximum amount of memory to use for combiner query executions
#continuous_query_combiner_work_mem = 256MB

# maximum memory to be used by the combiner for caching; this is independent
# of combiner_work_mem
#continuous_query_combiner_cache_mem = 32MB

# the default fillfactor to use for continuous views
#continuous_view_fillfactor = 50

# the time in milliseconds a continuous query process will wait for a batch
# to accumulate
# continuous_query_max_wait = 10

# the maximum number of events to accumulate before executing a continuous query
# plan on them
#continuous_query_batch_size = 10000

# the number of parallel continuous query combiner processes to use for
# each database
#continuous_query_num_combiners = 2

# the number of parallel continuous query worker processes to use for
# each database
#continuous_query_num_workers = 2

# allow direct changes to be made to materialization tables?
#continuous_query_materialization_table_updatable = off

# inserts into streams should be synchronous?
#synchronous_stream_insert = off

# continuous views that should be affected when writing to streams.
# it is string with comma separated values for continuous view names.
#stream_targets = ''

启动数据库,可以看到原生是支持postgis的,吐个槽,这个项目是专门为NASA研发的么?

pdb@digoal-> pipeline-ctl start
pdb@digoal-> psql pipeline postgres
psql (9.4.4)
Type "help" for help.

pipeline=# \l
                             List of databases
   Name    |  Owner   | Encoding | Collate | Ctype |   Access privileges   
-----------+----------+----------+---------+-------+-----------------------
 pipeline  | postgres | UTF8     | C       | C     | 
 template0 | postgres | UTF8     | C       | C     | =c/postgres          +
           |          |          |         |       | postgres=CTc/postgres
 template1 | postgres | UTF8     | C       | C     | =c/postgres          +
           |          |          |         |       | postgres=CTc/postgres
(3 rows)
pipeline=# \dx
                                          List of installed extensions
       Name       | Version  |   Schema   |                             Description                             
------------------+----------+------------+---------------------------------------------------------------------
 plpgsql          | 1.0      | pg_catalog | PL/pgSQL procedural language
 postgis          | 2.2.0dev | pg_catalog | PostGIS geometry, geography, and raster spatial types and functions
 postgis_topology | 2.2.0dev | topology   | PostGIS topology spatial types and functions
(3 rows)

查看pipelinedb加了哪些函数,有些是插件形式加入的,如POSTGIS,有些是我们可以借鉴,直接拿来用的。

pipeline=# select proname from pg_proc order by oid desc;
......
 second
 minute
 hour
 day
 month
 year
......
 cmsketch_empty
 tdigest_add
 tdigest_empty
 tdigest_empty
 bloom_add
 bloom_empty
 bloom_empty
 hll_add
 hll_empty
 hll_empty
......

可以看到pipelinedb加入了hll,bloom,tdigest,cmsketch算法,还有很多可以发掘,例如支持grouping set, 窗口查询的流视图等等。

在我自己的笔记本中的虚拟机中的性能测试:
创建5个动态流视图,动态流视图就是不需要建立基表的流视图。

CREATE CONTINUOUS VIEW v0 AS SELECT COUNT(*) FROM stream; 
CREATE CONTINUOUS VIEW v1 AS SELECT sum(x::int),count(*),avg(y::int) FROM stream; 
CREATE CONTINUOUS VIEW v001 AS SELECT sum(x::int),count(*),avg(y::int) FROM stream1;
CREATE CONTINUOUS VIEW v002 AS SELECT sum(x::int),count(*),avg(y::int) FROM stream2; 
CREATE CONTINUOUS VIEW v003 AS SELECT sum(x::int),count(*),avg(y::int) FROM stream3;

激活流统计

activate;

查看数据字典

select relname from pg_class where relkind='C';

批量插入测试

pdb@digoal-> vi test.sql
insert into stream(x,y,z) select generate_series(1,1000),1,1;
insert into stream1(x,y,z) select generate_series(1,1000),1,1;
insert into stream2(x,y,z) select generate_series(1,1000),1,1;
insert into stream3(x,y,z) select generate_series(1,1000),1,1;

测试结果,注意这里需要使用simple或者extended , 如果用prepared会导致只有最后一条SQL起作用。现在不清楚是pipelinedb还是pgbench的BUG。

pdb@digoal-> /opt/pgsql/bin/pgbench -M extended -n -r -f ./test.sql -P 1 -c 10 -j 10 -T 100000
progress: 1.0 s, 133.8 tps, lat 68.279 ms stddev 58.444
progress: 2.0 s, 143.9 tps, lat 71.623 ms stddev 53.880
progress: 3.0 s, 149.5 tps, lat 66.452 ms stddev 49.727
progress: 4.0 s, 148.3 tps, lat 67.085 ms stddev 55.484
progress: 5.1 s, 145.7 tps, lat 68.624 ms stddev 67.795

每秒入库约58万条记录,并完成5个流视图的统计。
如果用物理机的话,估计可以到500万每秒的级别。后面有时间再试试。
因为都在内存中完成,所以速度非常快。
pipelinedb使用了worker进程来处理数据合并。
压测时的top如下:

top - 11:23:07 up  2:49,  4 users,  load average: 1.83, 3.08, 1.78
Tasks: 177 total,   5 running, 172 sleeping,   0 stopped,   0 zombie
Cpu(s): 11.6%us, 15.0%sy, 10.3%ni, 63.0%id,  0.0%wa,  0.0%hi,  0.1%si,  0.0%st
Mem:   3916744k total,   605084k used,  3311660k free,    27872k buffers
Swap:  1048572k total,        0k used,  1048572k free,   401748k cached

  PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND                                             
11469 pdb       25   5  405m  75m  67m R 52.9  2.0   1:56.45 pipeline: bgworker: worker0 [pipeline] 
12246 pdb       20   0  400m  69m  67m S 14.3  1.8   0:10.55 pipeline: postgres pipeline [local] idle  
12243 pdb       20   0  400m  69m  67m S 13.3  1.8   0:10.45 pipeline: postgres pipeline [local] idle 
12248 pdb       20   0  400m  69m  67m S 13.3  1.8   0:10.40 pipeline: postgres pipeline [local] idle            
12244 pdb       20   0  400m  69m  67m S 12.6  1.8   0:10.50 pipeline: postgres pipeline [local] idle 
12237 pdb       20   0  400m  69m  67m R 12.3  1.8   0:10.52 pipeline: postgres pipeline [local] idle            
12247 pdb       20   0  402m  70m  67m R 12.3  1.8   0:10.70 pipeline: postgres pipeline [local] idle            
12245 pdb       20   0  401m  69m  67m S 12.0  1.8   0:10.78 pipeline: postgres pipeline [local] idle            
12235 pdb       20   0  400m  69m  67m S 11.3  1.8   0:10.88 pipeline: postgres pipeline [local] idle            
12239 pdb       20   0  400m  69m  67m S 11.0  1.8   0:10.79 pipeline: postgres pipeline [local] idle            
12241 pdb       20   0  400m  69m  67m S 11.0  1.8   0:10.53 pipeline: postgres pipeline [local] idle            
11466 pdb       20   0  119m 1480  908 R  5.3  0.0   0:58.39 pipeline: stats collector process                   
11468 pdb       25   5  401m  12m 9744 S  2.3  0.3   0:16.49 pipeline: bgworker: combiner0 [pipeline]            
12228 pdb       20   0  678m 3408  884 S  2.3  0.1   0:02.36 /opt/pgsql/bin/pgbench -M extended -n -r -f ./test.sql -P 1 -c 10 -j 10 -T 100000 
11464 pdb       20   0  398m  17m  16m S  1.7  0.4   0:10.47 pipeline: wal writer process                        
11459 pdb       20   0  398m 153m 153m S  0.0  4.0   0:00.37 /usr/lib/pipelinedb/bin/pipeline-server             
11460 pdb       20   0  115m  852  424 S  0.0  0.0   0:00.02 pipeline: logger process                            
11462 pdb       20   0  398m 3336 2816 S  0.0  0.1   0:00.06 pipeline: checkpointer process                      
11463 pdb       20   0  398m 2080 1604 S  0.0  0.1   0:00.08 pipeline: writer process                            
11465 pdb       20   0  401m 4460 1184 S  0.0  0.1   0:00.33 pipeline: autovacuum launcher process               
11467 pdb       20   0  398m 1992 1056 S  0.0  0.1   0:00.00 pipeline: continuous query scheduler process

pdb@digoal-> psql
psql (9.4.4)
Type "help" for help.
pipeline=# select * from v0;
  count  
---------
 9732439
(1 row)

pipeline=# select * from v1;
    sum     |  count  |          avg           
------------+---------+------------------------
 4923514276 | 9837585 | 1.00000000000000000000
(1 row)

pipeline=# select * from v001;
     sum      |  count   |          avg           
--------------+----------+------------------------
 505023543131 | 11036501 | 1.00000000000000000000
(1 row)

pipeline=# select * from v002;
      sum      |  count   |          avg           
---------------+----------+------------------------
 1005065536319 | 12119513 | 1.00000000000000000000
(1 row)

pipeline=# select * from v003;
     sum     |  count   |          avg           
-------------+----------+------------------------
 14948355485 | 29867002 | 1.00000000000000000000
(1 row)

在写入 10 亿 流数据后,数据库的大小依旧只有13MB,因为流数据都在内存中,处理完就丢弃了。

pipeline=# \l+
                                                              List of databases
   Name    |  Owner   | Encoding | Collate | Ctype |   Access privileges   | Size  | Tablespace |                Description                 
-----------+----------+----------+---------+-------+-----------------------+-------+------------+--------------------------------------------
 pipeline  | postgres | UTF8     | C       | C     |                       | 13 MB | pg_default | default administrative connection database
 template0 | postgres | UTF8     | C       | C     | =c/postgres          +| 12 MB | pg_default | unmodifiable empty database
           |          |          |         |       | postgres=CTc/postgres |       |            | 
 template1 | postgres | UTF8     | C       | C     | =c/postgres          +| 12 MB | pg_default | default template for new databases
           |          |          |         |       | postgres=CTc/postgres |       |            | 
(3 rows)

如果你的应用有类似场景,恭喜你,找到杀手锏了。

[参考]
https://github.com/pipelinedb/pipelinedb
https://www.pipelinedb.com/

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
关系型数据库 物联网 PostgreSQL
沉浸式学习PostgreSQL|PolarDB 11: 物联网(IoT)、监控系统、应用日志、用户行为记录等场景 - 时序数据高吞吐存取分析
物联网场景, 通常有大量的传感器(例如水质监控、气象监测、新能源汽车上的大量传感器)不断探测最新数据并上报到数据库. 监控系统, 通常也会有采集程序不断的读取被监控指标(例如CPU、网络数据包转发、磁盘的IOPS和BW占用情况、内存的使用率等等), 同时将监控数据上报到数据库. 应用日志、用户行为日志, 也就有同样的特征, 不断产生并上报到数据库. 以上数据具有时序特征, 对数据库的关键能力要求如下: 数据高速写入 高速按时间区间读取和分析, 目的是发现异常, 分析规律. 尽量节省存储空间
790 1
|
5月前
|
SQL 关系型数据库 PostgreSQL
PostgreSQL 如何通过身份证号码进行年龄段的统计?
【8月更文挑战第20天】PostgreSQL 如何通过身份证号码进行年龄段的统计?
558 2
|
8月前
|
存储 JSON 关系型数据库
PostgreSQL Json应用场景介绍和Shared Detoast优化
PostgreSQL Json应用场景介绍和Shared Detoast优化
|
8月前
|
关系型数据库 数据库 PostgreSQL
Docker【应用 03】给Docker部署的PostgreSQL数据库安装PostGIS插件(安装流程及问题说明)
Docker【应用 03】给Docker部署的PostgreSQL数据库安装PostGIS插件(安装流程及问题说明)
468 0
|
8月前
|
关系型数据库 数据库 PostgreSQL
PostgreSQL【应用 01】使用Vector插件实现向量相似度查询(Docker部署的PostgreSQL安装pgvector插件说明)和Milvus向量库对比
PostgreSQL【应用 01】使用Vector插件实现向量相似度查询(Docker部署的PostgreSQL安装pgvector插件说明)和Milvus向量库对比
688 1
|
8月前
|
SQL 关系型数据库 C语言
PostgreSQL【应用 03】Docker部署的PostgreSQL扩展SQL之C语言函数(编写、编译、载入)计算向量余弦距离实例分享
PostgreSQL【应用 03】Docker部署的PostgreSQL扩展SQL之C语言函数(编写、编译、载入)计算向量余弦距离实例分享
106 0
|
8月前
|
SQL 关系型数据库 数据库
PostgreSQL【应用 02】扩展SQL之C语言函数(编写、编译、载入)实例分享
PostgreSQL【应用 02】扩展SQL之C语言函数(编写、编译、载入)实例分享
243 0
|
存储 关系型数据库 数据库
《PostgreSQL物化视图:创建、维护与应用》
《PostgreSQL物化视图:创建、维护与应用》
141 0
|
存储 JSON 关系型数据库
《PostgreSQL中的JSON处理:技巧与应用》
《PostgreSQL中的JSON处理:技巧与应用》
139 0
|
人工智能 关系型数据库 Serverless
探索AI知识库问答应用:函数计算与RDS PostgreSQL的奇妙融合
随着技术的飞速发展,AI大语言模型成为了当今科技界的一颗璀璨明星。我有幸跟随老陈的引导,踏入了基于函数计算(FC)和RDS PostgreSQL的AI知识库问答应用的世界。这次的探索让我深切感受到了云计算和人工智能的结合,以及它们如何塑造着未来的技术格局。
232 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版