开发者社区> zuozewei> 正文

Kubernetes + Spring Cloud 集成链路追踪 SkyWalking

简介: 分布式系统的应用程序性能监视工具,专为微服务、云原生架构和基于容器(Docker、K8s、Mesos)架构而设计。 提供分布式追踪、服务网格遥测分析、度量聚合和可视化一体化解决方案。
+关注继续查看

一、概述

1、什么是 SkyWalking ?

分布式系统的应用程序性能监视工具,专为微服务、云原生架构和基于容器(Docker、K8s、Mesos)架构而设计。
提供分布式追踪、服务网格遥测分析、度量聚合和可视化一体化解决方案。

官网地址:http://skywalking.apache.org/

2、SkyWalking 特性

  • 多种监控手段,语言探针和 Service Mesh
  • 多语言自动探针,Java,.NET Core和Node.JS
  • 轻量高效,不需要大数据
  • 模块化,UI、存储、集群管理多种机制可选
  • 支持告警
  • 优秀的可视化方案

3、整体结构

在这里插入图片描述
整个架构,分成上、下、左、右四部分:

考虑到让描述更简单,我们舍弃掉 Metric 指标相关,而着重在 Tracing 链路相关功能。

  • 上部分 Agent :负责从应用中,收集链路信息,发送给 SkyWalking OAP 服务器。目前支持
    SkyWalking、Zikpin、Jaeger 等提供的 Tracing 数据信息。而我们目前采用的是,SkyWalking Agent 收集 SkyWalking Tracing数据,传递给服务器。

    • 下部分 SkyWalking OAP :负责接收 Agent 发送的 Tracing 数据信息,然后进行分析(Analysis Core) ,存储到外部存储器( Storage ),最终提供查询( Query)功能。
    • 右部分 Storage :Tracing 数据存储。目前支持 ES、MySQL、Sharding Sphere、TiDB、H2
      多种存储器。而我们目前采用的是 ES ,主要考虑是 SkyWalking 开发团队自己的生产环境采用 ES 为主。
    • 左部分 SkyWalking UI :负责提供控台,查看链路等等

简单概况原理为下图:
在这里插入图片描述

二、搭建 skywalking

1、环境准备

  • Mkubernetes 版本:1.18.5
  • Nginx Ingress 版本:2.2.8
  • Helm 版本:3.2.4
  • 持久化存储驱动:NFS

2、使用 chart 部署

本文主要讲述的是如何使用 Helm Charts 将 SkyWalking 部署到 Kubernetes 集群中,相关文档可以参考skywalking-kubernetes

目前推荐的四种方式:

  • 使用 helm 3 提供的 helm serve 启动本地 helm repo
  • 使用本地 chart 文件部署
  • 使用 harbor 提供的 repo 功能
  • 直接从官方 repo 进行部署(暂不满足)
注意:目前 skywalking 的 chart 还没有提交到官方仓库,请先参照前三种方式进行部署

2.1、 下载 chart 文件

可以直接使用本地文件部署 skywalking,按照上面的步骤将skywalking chart下载完成之后,直接使用以下命令进行部署:

git clone https://github.com/apache/skywalking-kubernetes
cd skywalking-kubernetes/chart
helm repo add elastic https://helm.elastic.co
helm dep up skywalking
export SKYWALKING_RELEASE_NAME=skywalking  # 定义自己的名称
export SKYWALKING_RELEASE_NAMESPACE=default  # 定义自己的命名空间

2.2、定义已存在es参数文件

修改values-my-es.yaml:

oap:
  image:
    tag: 8.1.0-es7      # Set the right tag according to the existing Elasticsearch version
  storageType: elasticsearch7

ui:
  image:
    tag: 8.1.0

elasticsearch:
  enabled: false
  config:               # For users of an existing elasticsearch cluster,takes effect when `elasticsearch.enabled` is false
    host: elasticsearch-client
    port:
      http: 9200
    user: "elastic"         # [optional]
    password: "admin@123"     # [optional]

2.3、helm 安装

helm install "${SKYWALKING_RELEASE_NAME}" skywalking -n "${SKYWALKING_RELEASE_NAMESPACE}" \
  -f ./skywalking/values-my-es.yaml

安装完成后,我们核实下安装情况:

$ kubectl get deployment -n skywalking
NAME                READY   UP-TO-DATE   AVAILABLE   AGE
my-skywalking-oap   2/2     2            2           9m
my-skywalking-ui    1/1     1            1           9m

三、使用 Skywalking Agent

Java 中使用 agent ,提供了以下三种方式供你选择

  • 使用官方提供的基础镜像
  • 将 agent 包构建到已经存在的基础镜像中
  • sidecar 模式挂载 agent(推荐)

1、使用官方提供的基础镜像

查看官方 docker hub 提供的基础镜像,只需要在你构建服务镜像是 From 这个镜像即可,直接集成到 Jenkins 中可以更加方便

2、将 agent 包构建到已经存在的基础镜像中

提供这种方式的原因是:官方的镜像属于精简镜像,并且是 openjdk ,可能很多命令没有,需要自己二次安装,这里略过。

3、sidecar 模式挂载 agent

由于服务是部署在 Kubernetes 中,使用这种方式来使用 Skywalking Agent ,这种方式的好处在与不需要修改原来的基础镜像,也不用重新构建新的服务镜像,而是以sidecar 模式,通过共享 volume 的方式将 agent 所需的相关文件挂载到已经存在的服务镜像中。

3.1、构建 skywalking agent image

自己构建,参考:https://hub.docker.com/r/prophet/skywalking-agent

通过以下 dockerfile 进行构建:

FROM alpine:3.8

LABEL maintainer="zuozewei@hotmail.com"

ENV SKYWALKING_VERSION=8.1.0

ADD http://mirrors.tuna.tsinghua.edu.cn/apache/skywalking/${SKYWALKING_VERSION}/apache-skywalking-apm-${SKYWALKING_VERSION}.tar.gz /

RUN tar -zxvf /apache-skywalking-apm-${SKYWALKING_VERSION}.tar.gz && \
    mv apache-skywalking-apm-bin skywalking && \
    mv /skywalking/agent/optional-plugins/apm-trace-ignore-plugin* /skywalking/agent/plugins/ && \
    echo -e "\n# Ignore Path" >> /skywalking/agent/config/agent.config && \
    echo "# see https://github.com/apache/skywalking/blob/v8.1.0/docs/en/setup/service-agent/java-agent/agent-optional-plugins/trace-ignore-plugin.md" >> /skywalking/agent/config/agent.config && \
    echo 'trace.ignore_path=${SW_IGNORE_PATH:/health}' >> /skywalking/agent/config/agent.config
docker build -t 172.16.106.237/monitor/skywalking-agent:8.1.0 .

待 docker build 完毕后,push 到仓库即可。

3.2、使用 sidecar 挂载

示例配置文件如下:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: demo-skywalking
spec:
  replicas: 1
  selector:
    matchLabels:
      app: demo-skywalking
  strategy:
    rollingUpdate:
      maxSurge: 1
      maxUnavailable: 0
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: demo-skywalking
    spec:
      initContainers:
        - name: init-skywalking-agent
          image: 172.16.106.237/monitor/skywalking-agent:8.1.0
          command:
            - 'sh'
            - '-c'
            - 'set -ex;mkdir -p /vmskywalking/agent;cp -r /skywalking/agent/* /vmskywalking/agent;'
          volumeMounts:
            - mountPath: /vmskywalking/agent
              name: skywalking-agent
      containers:
        - image: nginx:1.7.9
          imagePullPolicy: Always
          name: nginx
          ports:
            - containerPort: 80
              protocol: TCP
          volumeMounts:
            - mountPath: /opt/skywalking/agent
              name: skywalking-agent
      volumes:
        - name: skywalking-agent
          emptyDir: {}

以上是挂载 sidecar 的 deployment.yaml 文件,以 nginx 作为服务为例,主要是通过共享 volume 的方式挂载 agent,首先 initContainers 通过 skywalking-agent 卷挂载了 sw-agent-sidecar 中的 /vmskywalking/agent ,并且将上面构建好的镜像中的 agent 目录 cp 到了 /vmskywalking/agent 目录,完成之后 nginx 启动时也挂载了 skywalking-agent 卷,并将其挂载到了容器的 /opt/skywalking/agent 目录,这样就完成了共享过程。

四、改造 Spring Cloud 应用

1、docker打包并推送到仓库

修改下 dockerfile 配置,集成 skywalking agent:

FROM insideo/centos7-java8-build
VOLUME /tmp
ADD mall-admin.jar app.jar
RUN bash -c 'touch /app.jar'
RUN ln -snf /usr/share/zoneinfo/Asia/Shanghai  /etc/localtime && echo Asia/Shanghai > /etc/timezone
ENTRYPOINT ["java","-Dapp.id=svc-mall-admin","-javaagent:/opt/skywalking/agent/skywalking-agent.jar","-Dskywalking.agent.service_name=svc-mall-admin","-Dskywalking.collector.backend_service=my-skywalking-oap.skywalking.svc.cluster.local:11800","-jar","-Dspring.profiles.active=prod","-Djava.security.egd=file:/dev/./urandom","/app.jar"]

改好了,直接运行 maven package 就能将这个项目打包成镜像。

注意:

k8s 创建 Service 时,它会创建相应的 DNS 条目。此条目的格式为 <service-name>.<namespace-name>.svc.cluster.local,这意味着如果容器只使用 <service-name>,它将解析为本地服务到命名空间。 如果要跨命名空间访问,则需要使用完全限定的域名。

2、编写 k8s的yaml版本的部署脚本

这里我以其中某服务举例:

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: svc-mall-admin
spec:
  replicas: 1
  selector:
    matchLabels:
      app: svc-mall-admin
  strategy:
    rollingUpdate:
      maxSurge: 1
      maxUnavailable: 0
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: svc-mall-admin
    spec:
      initContainers:
        - name: init-skywalking-agent
          image: 172.16.106.237/monitor/skywalking-agent:8.1.0
          command:
            - 'sh'
            - '-c'
            - 'set -ex;mkdir -p /vmskywalking/agent;cp -r /skywalking/agent/* /vmskywalking/agent;'
          volumeMounts:
            - mountPath: /vmskywalking/agent
              name: skywalking-agent
      containers:
        - image: 172.16.106.237/mall_repo/mall-admin:1.0
          imagePullPolicy: Always
          name: mall-admin
          ports:
            - containerPort: 8180
              protocol: TCP
          volumeMounts:
            - mountPath: /opt/skywalking/agent
              name: skywalking-agent
      volumes:
        - name: skywalking-agent
          emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
  name: svc-mall-admin
spec:
  ports:
    - name: http
      port: 8180
      protocol: TCP
      targetPort: 8180
  selector:
    app: svc-mall-admin

然后就可以直接运行了,它就可以将的项目全部跑起来了。

五、测试验证

完事,可以去 SkyWalking UI 查看是否链路收集成功。

1、 测试应用 API

首先,请求下 Spring Cloud 应用提供的 API。因为,我们要追踪下该链路。

在这里插入图片描述

2、 查看 SkyWalking UI 界面

在这里插入图片描述

这里,我们会看到 SkyWalking 中非常重要的三个概念:

  • 服务(Service) :表示对请求提供相同行为的一系列或一组工作负载。在使用 Agent 或 SDK 的时候,你可以定义服务的名字。如果不定义的话,SkyWalking 将会使用你在平台(例如说 Istio)上定义的名字。这里,我们可以看到 Spring Cloud 应用的服务为 svc-mall-admin,就是我们在 agent 环境变量 service_name 中所定义的。
  • 服务实例(Service Instance) :上述的一组工作负载中的每一个工作负载称为一个实例。就像 Kubernetes 中的 pods 一样, 服务实例未必就是操作系统上的一个进程。但当你在使用 Agent 的时候, 一个服务实例实际就是操作系统上的一个真实进程。这里,我们可以看到 Spring Cloud 应用的服务为 UUID@hostname,由 Agent 自动生成。
  • 端点(Endpoint) :对于特定服务所接收的请求路径, 如 HTTP 的 URI 路径和 gRPC 服务的类名 + 方法签名。

这里,我们可以看到 Spring Cloud 应用的一个端点,为 API 接口 /mall-admin/admin/login

更多 agent 参数介绍参考:

https://github.com/apache/skywalking/blob/v8.1.0/docs/en/setup/service-agent/java-agent/README.md

点击「拓扑图」菜单,进入查看拓扑图的界面:

在这里插入图片描述

点击「追踪」菜单,进入查看链路数据的界面:
在这里插入图片描述

六、小结

本文详细介绍了如何使用 Kubernetes + Spring Cloud 集成 SkyWalking,顺便说下调用链监控在目前的微服务系统里面是必不可少的组件,分布式追踪、服务网格遥测分析、度量聚合和可视化还是挺好用的,这里我们选择了 Skywalking,具体原因和细节的玩法就不在此详述了。

本文源码:

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
JSP - 起源、执行过程、运行原理、生命周期
JSP - 起源、执行过程、运行原理、生命周期
5 0
在函数中使用局部变量并且通过局部变量返回函数值的方案来了
感谢小游戏可视化体验官群中的一位叫做“@天羽地王”的朋友提供的思路。本文内容主要包括如何在函数中使用局部变量并且通过局部变量来返回函数的结果值。
7 0
心中有“树”!图文并茂介绍数据结构中常见的树(二)
计算机科学家尼古拉斯·沃斯(Niklaus Wirth)曾说过:编程=数据结构+算法 ,可见数据结构在编程中的重要性。
4 0
这个开源项目绝绝子,一键生成好玩的矢量风格头像!
最近逛 GitHub,发现了一个非常好玩的开源项目——头像生成器,给大家分享一下~
4 0
微信小游戏推广运营专业术语汇总
本文内容包括与微信小游戏运营推广相关的专业术语的汇总和解释。作为一个游戏开发者,不光要知道如何做游戏,也要知道如何让别人玩自己做的游戏。
4 0
心中有“树”!图文并茂介绍数据结构中常见的树(三)
在前面两篇文章中,我们简要介绍了数据结构中的各种【树】在搜索、数据库等领域的使用场景,希望对大家有所帮助。
10 0
如何快速的做一个血条
本文主要内容:如何在小游戏制作工具中利用“遮罩”快速的实现一个血条。
7 0
如何在小游戏制作工具中使用云函数
本节试图以最简单的方式带你了解如何在小程序后台申请和开通云开发服务,创建并编写第一个云函数并在小游戏制作工具中对其进行调用。
9 0
+关注
zuozewei
「7DGroup」技术公众号作者, InfoQ签约作者,CSDN博客专家、测试领域优质创作者,华为云云享专家、2021年度华为云社区十佳博主,掘金2021年度人气作者No.12,极客时间《全链路压测实战30讲》专栏作者之一,极客时间《性能测试实战30讲》、《高楼的性能工程实战课》专栏编委。
26
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
OceanBase 入门到实战教程
立即下载
阿里云图数据库GDB,加速开启“图智”未来.ppt
立即下载
实时数仓Hologres技术实战一本通2.0版(下)
立即下载