【Elastic Engineering】如何使用 Elasticsearch 中的 copy_to 来提高搜索效率

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 如何使用 Elasticsearch 中的 copy_to 来提高搜索效率

作者:刘晓国


在今天的这个教程中,我们来着重讲解一下如何使用 Elasticsearch 中的 copy 来提高搜索的效率。比如在我们的搜索中,经常我们会遇到如下的文档:

{
    "user" : "双榆树-张三",
    "message" : "今儿天气不错啊,出去转转去",
    "uid" : 2,
    "age" : 20,
    "city" : "北京",
    "province" : "北京",
    "country" : "中国",
    "address" : "中国北京市海淀区",
    "location" : {
      "lat" : "39.970718",
      "lon" : "116.325747"
    }
}

在这里,我们可以看到在这个文档中,我们有这样的几个字段:

 "city" : "北京",
 "province" : "北京",
 "country" : "中国",

它们是非常相关的。我们在想是不是可以把它们综合成一个字段,这样可以方便我们的搜索。假如我们要经常对这三个字段进行搜索,那么一种方法我们可以在 must 子句中使用 should 子句运行 bool 查询。这种方法写起来比较麻烦。有没有一种更好的方法呢?


我们其实可以使用 Elasticsearch 所提供的 copy_to 来提高我们的搜索效率。我们可以首先把我们索引的 mapping 设置成如下的项(这里假设我们使用的是一个叫做 twitter 的索引)。

PUT twitter
{
  "mappings": {
    "properties": {
      "address": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "age": {
        "type": "long"
      },
      "city": {
        "type": "keyword",
        "copy_to": "region"
      },
      "country": {
        "type": "keyword",
        "copy_to": "region"
      },
      "province": {
        "type": "keyword",
        "copy_to": "region"
      },
      "region": {
        "type": "text",
        "store": true
      },
      "location": {
        "type": "geo_point"
      },
      "message": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "uid": {
        "type": "long"
      },
      "user": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      }
    }
  }
}

在这里,我们特别注意如下的这个部分:

    "city": {
      "type": "keyword",
      "copy_to": "region"
    },
    "country": {
      "type": "keyword",
      "copy_to": "region"      
    },
    "province": {
      "type": "keyword",
      "copy_to": "region"
    },
    "region": {
      "type": "text"
    }

我们把 city, country 及 province 三个项合并成为一个项 region,但是这个 region 并不存在于我们文档的 source 里。当我们这么定义我们的 mapping 的话,在文档被索引之后,有一个新的 region 项可以供我们进行搜索。


我们可以采用如下的数据来进行展示:

POST _bulk
{ "index" : { "_index" : "twitter", "_id": 1} }
{"user":"双榆树-张三","message":"今儿天气不错啊,出去转转去","uid":2,"age":20,"city":"北京","province":"北京","country":"中国","address":"中国北京市海淀区","location":{"lat":"39.970718","lon":"116.325747"}}
{ "index" : { "_index" : "twitter", "_id": 2 }}
{"user":"东城区-老刘","message":"出发,下一站云南!","uid":3,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区台基厂三条3号","location":{"lat":"39.904313","lon":"116.412754"}}
{ "index" : { "_index" : "twitter", "_id": 3} }
{"user":"东城区-李四","message":"happy birthday!","uid":4,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区","location":{"lat":"39.893801","lon":"116.408986"}}
{ "index" : { "_index" : "twitter", "_id": 4} }
{"user":"朝阳区-老贾","message":"123,gogogo","uid":5,"age":35,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区建国门","location":{"lat":"39.718256","lon":"116.367910"}}
{ "index" : { "_index" : "twitter", "_id": 5} }
{"user":"朝阳区-老王","message":"Happy BirthDay My Friend!","uid":6,"age":50,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区国贸","location":{"lat":"39.918256","lon":"116.467910"}}
{ "index" : { "_index" : "twitter", "_id": 6} }
{"user":"虹桥-老吴","message":"好友来了都今天我生日,好友来了,什么 birthday happy 就成!","uid":7,"age":90,"city":"上海","province":"上海","country":"中国","address":"中国上海市闵行区","location":{"lat":"31.175927","lon":"121.383328"}}

在 Kibana 中执行上面的语句,它将为我们生产我们的 twitter 索引。同时我们可以通过如下的语句来查询我们的 mapping:

image.png


我们可以看到 twitter 的 mapping 中有一个新的被称作为 region 的项。它将为我们的搜索带来方便。


那么假如我们想搜索 country:中国,province:北京 这样的记录的话,我们可以只写如下的一条语句就可以了:

GET twitter/_search 
{
  "query": {
    "match": {
      "region": {
        "query": "中国 北京",
        "minimum_should_match": 4
      }
    }
  }
}

下面显示的是搜索的结果:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : 0.8114117,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.8114117,
        "_source" : {
          "user" : "双榆树-张三",
          "message" : "今儿天气不错啊,出去转转去",
          "uid" : 2,
          "age" : 20,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市海淀区",
          "location" : {
            "lat" : "39.970718",
            "lon" : "116.325747"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.8114117,
        "_source" : {
          "user" : "东城区-老刘",
          "message" : "出发,下一站云南!",
          "uid" : 3,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区台基厂三条3号",
          "location" : {
            "lat" : "39.904313",
            "lon" : "116.412754"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 0.8114117,
        "_source" : {
          "user" : "东城区-李四",
          "message" : "happy birthday!",
          "uid" : 4,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区",
          "location" : {
            "lat" : "39.893801",
            "lon" : "116.408986"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : 0.8114117,
        "_source" : {
          "user" : "朝阳区-老贾",
          "message" : "123,gogogo",
          "uid" : 5,
          "age" : 35,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区建国门",
          "location" : {
            "lat" : "39.718256",
            "lon" : "116.367910"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : 0.8114117,
        "_source" : {
          "user" : "朝阳区-老王",
          "message" : "Happy BirthDay My Friend!",
          "uid" : 6,
          "age" : 50,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区国贸",
          "location" : {
            "lat" : "39.918256",
            "lon" : "116.467910"
          }
        }
      }
    ]
  }
}

这样我们只对一个 region 进行操作就可以了,否则我们需要针对 country, city 及 province 分别进行搜索。


如何查看 copy_to 的内容


在之前的 mapping 中,我们对 region 字段加入了如下的一个属性:

      "region": {
        "type": "text",
        "store": true
      }

这里的 store 属性为 true,那么我们可以通过如下的命令来查看文档的 region 的内容:

GET twitter/_doc/1?stored_fields=region

那么它显示的内容如下:

{
  "_index" : "twitter",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "fields" : {
    "region" : [
      "北京",
      "北京",
      "中国"
    ]
  }
}

如果你想了解更多关于 Elastic Stack,请参阅文章 “Elasticsearch 简介


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
6天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
18天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
123 2
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
3天前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
|
21天前
|
存储 人工智能 API
(Elasticsearch)使用阿里云 infererence API 及 semantic text 进行向量搜索
本文展示了如何使用阿里云 infererence API 及 semantic text 进行向量搜索。
|
17天前
|
搜索推荐 API 定位技术
一文看懂Elasticsearch的技术架构:高效、精准的搜索神器
Elasticsearch 是一个基于 Lucene 的开源搜索引擎,以其强大的全文本搜索功能和快速的倒排索引技术著称。它不仅支持数字、文本、地理位置等多类型数据,还提供了可调相关度分数、高级查询 DSL 等功能。Elasticsearch 的核心技术流程包括数据导入、解析、索引化、查询处理、得分计算及结果返回,确保高效处理大规模数据并提供准确的搜索结果。通过 RESTful API、Logstash 和 Filebeat 等工具,Elasticsearch 可以从多种数据源中导入和解析数据,支持复杂的查询需求。
75 0
|
2月前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
54 6
|
2月前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
52 1
|
2月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
68 5
|
3月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
281 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
4月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo

热门文章

最新文章

相关产品

  • 检索分析服务 Elasticsearch版