大数据进阶之路——Spark SQL补充

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 文章目录手写 WordCountRDD、DAG、 Stage、 Task 、 JobSpark 作业提交流程Spark 的 Local 和 Standalone宽依赖、窄依赖Spark SQL比 Hive 快在哪打包的注意事项

手写 WordCount

使用flatMap、reduceByKey 来计算

//sc是SparkContext对象,该对象是提交spark程序的入口
sc.textFile("file:///home/hadoop/data/hello.txt") // 读取文件,
  .flatMap(line => line.split(" "))  // 将文件中的每一行单词按照分隔符(这里是空格)分隔
  .map(word => (word,1))  //给每个单词计数为1
  .reduceByKey((x,y) => (x+y))  // 统计相同单词的数量
  .collect

简写

sc.textFile("file:///home/hadoop/data/hello.txt")
  .flatMap(_.split(" "))
  .map((_, 1))
  .reduceByKey(_ + _)
  .collect

RDD、DAG、 Stage、 Task 、 Job

RDD(Resilient Distributed Datasets),弹性分布式数据集

DAG(Directed Acyclic Graph),有向无环图


RDD RDD 是 Spark 的灵魂,也称为弹性分布式数据集。一个 RDD 代表一个可以被分区的只读数据集。RDD 内部可以有许多分区(partitions),每个分区又拥有大量的记录(records)。


DAG Spark 中使用 DAG 对 RDD 的关系进行建模,描述了 RDD 的依赖关系,这种关系也被称之为 lineage(血缘),RDD 的依赖关系使用 Dependency 维护。


Stage 在 DAG 中又进行 Stage 的划分,划分的依据是依赖是否是 shuffle 的,每个 Stage 又可以划分成若干 Task。接下来的事情就是 Driver 发送 Task 到 Executor,Executor 线程池去执行这些 task,完成之后将结果返回给 Driver。


Job Spark 的 Job 来源于用户执行 action 操作(这是 Spark 中实际意义的 Job),就是从 RDD 中获取结果的操作,而不是将一个 RDD 转换成另一个 RDD 的 transformation 操作。


Task 一个 Stage 内,最终的 RDD 有多少个 partition,就会产生多少个 task。


Spark 作业提交流程

image.png

spark-submit 提交代码,执行 new SparkContext(),在 SparkContext 里构造 DAGScheduler 和 TaskScheduler。

TaskScheduler 会通过后台的一个进程,连接 Master,向 Master 注册 Application。

Master 接收到 Application 请求后,会使用相应的资源调度算法,在 Worker 上为这个 Application 启动多个 Executor

Executor 启动后,会自己反向注册到 TaskScheduler 中。所有 Executor 都注册到 Driver 上之后,SparkContext 结束初始化,接下来往下执行我们自己的代码。

每执行到一个 Action,就会创建一个 Job。Job 会提交给 DAGScheduler。

DAGScheduler 会将 Job 划分为多个 Stage,然后每个 Stage 创建一个 TaskSet。

TaskScheduler 会把每一个 TaskSet 里的 Task,提交到 Executor 上执行。

Executor 上有线程池,每接收到一个 Task,就用 TaskRunner 封装,然后从线程池里取出一个线程执行这个 task。(TaskRunner 将我们编写的代码,拷贝,反序列化,执行 Task,每个 Task 执行 RDD 里的一个 partition)

Spark 的 Local 和 Standalone

Spark一共有6种运行模式:Local,Standalone,Yarn-Cluster,Yarn-Client, Mesos, Kubernetes


Local: Local 模式即单机模式,如果在命令语句中不加任何配置,则默认是 Local 模式,在本地运行。这也是部署、设置最简单的一种模式,所有的 Spark 进程都运行在一台机器或一个虚拟机上面。

Standalone: Standalone 是 Spark 自身实现的资源调度框架。如果我们只使用 Spark 进行大数据计算,不使用其他的计算框架时,就采用 Standalone 模式就够了,尤其是单用户的情况下。Standalone 模式是 Spark 实现的资源调度框架,其主要的节点有 Client 节点、Master 节点和 Worker 节点。其中 Driver 既可以运行在 Master 节点上中,也可以运行在本地 Client 端。当用 spark-shell 交互式工具提交 Spark 的 Job 时,Driver 在 Master 节点上运行;当使用 spark-submit 工具提交 Job 或者在 Eclipse、IDEA 等开发平台上使用 new SparkConf.setManager(“spark://master:7077”) 方式运行 Spark 任务时,Driver 是运行在本地 Client 端上的。

Standalone 模式的部署比较繁琐,不过官方有提供部署脚本,需要把 Spark 的部署包安装到每一台节点机器上,并且部署的目录也必须相同,而且需要 Master 节点和其他节点实现 SSH 无密码登录。启动时,需要先启动 Spark 的 Master 和 Slave 节点。提交命令类似于:

./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://Oscar-2.local:7077 \
  /tmp/spark-2.2.0-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.2.0.jar \
  100

其中 master:7077是 Spark 的 Master 节点的主机名和端口号,当然集群是需要提前启动。


不管使用什么模式,Spark应用程序的代码是一模一样的,只需要在提交的时候通过–master参数来指定我们的运行模式即可


Client

Driver运行在Client端(提交Spark作业的机器)

Client会和请求到的Container进行通信来完成作业的调度和执行,Client是不能退出的

日志信息会在控制台输出:便于我们测试


Cluster

Driver运行在ApplicationMaster中

Client只要提交完作业之后就可以关掉,因为作业已经在YARN上运行了

日志是在终端看不到的,因为日志是在Driver上,只能通过yarn logs -applicationIdapplication_id

./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--executor-memory 1G \
--num-executors 1 \
/home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/examples/jars/spark-examples_2.11-2.1.0.jar \

此处的yarn就是我们的yarn client模式

如果是yarn cluster模式的话,yarn-cluster


Exception in thread "main" java.lang.Exception: When running with master 'yarn' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.


如果想运行在YARN之上,那么就必须要设置HADOOP_CONF_DIR或者是YARN_CONF_DIR


1) export HADOOP_CONF_DIR=/home/hadoop/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop

2) $SPARK_HOME/conf/spark-env.sh

./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn-cluster \
--executor-memory 1G \
--num-executors 1 \
/home/hadoop/app/spark-2.1.0-bin-2.6.0-cdh5.7.0/examples/jars/spark-examples_2.11-2.1.0.jar \
4

yarn logs -applicationId application_1495632775836_0002

宽依赖、窄依赖

image.png

窄依赖指的是每一个 Parent RDD 的 Partition 最多被子 RDD 的一个 Partition 使用(一子一亲)


宽依赖指的是多个子 RDD 的 Partition 会依赖同一个 parent RDD的 partition(多子一亲)


RDD 作为数据结构,本质上是一个只读的分区记录集合。一个 RDD 可以包含多个分区,每个分区就是一个数据集片段。


首先,窄依赖可以支持在同一个节点上,以 pipeline 形式执行多条命令(也叫同一个 Stage 的操作),例如在执行了 map 后,紧接着执行 filter。相反,宽依赖需要所有的父分区都是可用的,可能还需要调用类似 MapReduce 之类的操作进行跨节点传递。


其次,则是从失败恢复的角度考虑。窄依赖的失败恢复更有效,因为它只需要重新计算丢失的 parent partition 即可,而且可以并行地在不同节点进行重计算(一台机器太慢就会重新调度到多个节点进行)。


Spark SQL比 Hive 快在哪

当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle。

由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率。


Spark SQL 比 Hadoop Hive 快,是有一定条件的,而且不是 Spark SQL 的引擎比 Hive 的引擎快,相反,Hive 的 HQL 引擎还比 Spark SQL 的引擎更快。其实,关键还是在于 Spark 本身快。


消除了冗余的 HDFS 读写: Hadoop 每次 shuffle 操作后,必须写到磁盘,而 Spark 在 shuffle 后不一定落盘,可以 persist 到内存中,以便迭代时使用。如果操作复杂,很多的 shufle 操作,那么 Hadoop 的读写 IO 时间会大大增加,也是 Hive 更慢的主要原因了。


消除了冗余的 MapReduce 阶段: Hadoop 的 shuffle 操作一定连着完整的 MapReduce 操作,冗余繁琐。而 Spark 基于 RDD 提供了丰富的算子操作,且 reduce 操作产生 shuffle 数据,可以缓存在内存中 。


JVM 的优化: Hadoop 每次 MapReduce 操作,启动一个 Task 便会启动一次 JVM,基于进程的操作。而 Spark 每次 MapReduce 操作是基于线程的,只在启动 Executor 是启动一次 JVM,内存的 Task 操作是在线程复用的。每次启动 JVM 的时间可能就需要几秒甚至十几秒,那么当 Task 多了,这个时间 Hadoop 不知道比 Spark 慢了多少。


打包的注意事项

打包时要注意,pom.xml中需要添加如下plugin

<plugin>
    <artifactId>maven-assembly-plugin</artifactId>
    <configuration>
        <archive>
            <manifest>
                <mainClass></mainClass>
            </manifest>
        </archive>
        <descriptorRefs>
            <descriptorRef>jar-with-dependencies</descriptorRef>
        </descriptorRefs>
    </configuration>
</plugin>

mvn assembly:assembly

./bin/spark-submit \
--class com.hiszm.log.SparkStatCleanJobYARN \
--name SparkStatCleanJobYARN \
--master yarn \
--executor-memory 1G \
--num-executors 1 \
--files /home/hadoop/lib/ipDatabase.csv,/home/hadoop/lib/ipRegion.xlsx \
/home/hadoop/lib/sql-1.0-jar-with-dependencies.jar \
hdfs://hadoop001:8020/hiszm/input/* hdfs://hadoop001:8020/hiszm/clean

注意:–files在spark中的使用


spark.read.format("parquet").load("/hiszm/clean/day=20170511/part-00000-71d465d1-7338-4016-8d1a-729504a9f95e.snappy.parquet").show(false)

./bin/spark-submit \
--class com.hiszm.log.TopNStatJobYARN \
--name TopNStatJobYARN \
--master yarn \
--executor-memory 1G \
--num-executors 1 \
/home/hadoop/lib/sql-1.0-jar-with-dependencies.jar \
hdfs://hadoop001:8020/hiszm/clean 20170511 

存储格式的选择:http://www.infoq.com/cn/articles/bigdata-store-choose/

压缩格式的选择:https://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-compression-analysis/


调整并行度

./bin/spark-submit \
--class com.hiszm.log.TopNStatJobYARN \
--name TopNStatJobYARN \
--master yarn \
--executor-memory 1G \
--num-executors 1 \
--conf spark.sql.shuffle.partitions=100 \
/home/hadoop/lib/sql-1.0-jar-with-dependencies.jar \
hdfs://hadoop001:8020/hiszm/clean 20170511 
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
157 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
136 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
97 1
|
2月前
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
|
SQL 分布式计算 Apache
Apache Spark 系列技术直播 - Spark SQL进阶与实战
Spark SQL进阶与实战 Spark相关组件介绍 Spark及其依赖组件 Hive Metastore介绍 Spark Thrift Server介绍 表与ETL Spark表基本概念 Spark建表最佳实践 Spark ETL最佳实践 动态分区表示例分析 Spark SQL查询最佳实践 Sp.
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
79 0
|
3月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
54 0
|
3月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
110 0
|
2月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
106 6
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
76 1

热门文章

最新文章