常见的分词器如下:
- Standard默认分词器
- IK 中文分词器
- Pinyin 分词器
- Smart Chinese 分词器
- hanlp 中文分词器
- 达摩院中文分词AliNLP
分词器比较
- standard 默认分词器,对单个字符进行切分,查全率高,准确度较低
- IK 分词器 ik_max_word:查全率与准确度较高,性能也高,是业务中普遍采用的中文分词器
- IK 分词器 ik_smart:切分力度较大,准确度与查全率不高,但是查询性能较高
- Smart Chinese 分词器:查全率与准确率性能较高
- hanlp 中文分词器:切分力度较大,准确度与查全率不高,但是查询性能较高
- Pinyin 分词器:针对汉字拼音进行的分词器,与上面介绍的分词器稍有不同,在用拼音进行查询时查全率准确度较高
下面详细介绍下各种分词器,对同一组汉语进行分词的结果对比,方便大家在实际使用中参考。
standard 默认分词器
GET_analyze{ "text": "南京市长江大桥", "tokenizer": "standard"} #返回{ "tokens" : [ { "token" : "南", "start_offset" : 0, "end_offset" : 1, "type" : "<IDEOGRAPHIC>", "position" : 0 }, { "token" : "京", "start_offset" : 1, "end_offset" : 2, "type" : "<IDEOGRAPHIC>", "position" : 1 }, { "token" : "市", "start_offset" : 2, "end_offset" : 3, "type" : "<IDEOGRAPHIC>", "position" : 2 }, { "token" : "长", "start_offset" : 3, "end_offset" : 4, "type" : "<IDEOGRAPHIC>", "position" : 3 }, { "token" : "江", "start_offset" : 4, "end_offset" : 5, "type" : "<IDEOGRAPHIC>", "position" : 4 }, { "token" : "大", "start_offset" : 5, "end_offset" : 6, "type" : "<IDEOGRAPHIC>", "position" : 5 }, { "token" : "桥", "start_offset" : 6, "end_offset" : 7, "type" : "<IDEOGRAPHIC>", "position" : 6 } ] }
默认分词器处理中文是按照单个汉字进行切割,不能很好的理解中文词语的含义,在实际项目使用中很少会使用默认分词器来处理中文。
IK 中文分词器:
插件下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases/tag/v7.10.0
(注意要下载和使用的Elasticsearch 匹配的版本)
- 在 Elasticsearch 的安装目录的 Plugins 目录下新建 IK 文件夹,然后将下载的 IK 安装包解压到此目录下
- 重启 ES 即生效
IK 分词器包含:ik_smart 以及 ik_max_word 2种分词器,都可以使用在
索引和查询阶段。创建一个索引,里面包含2个字段:
- max_word_content 使用 ik_max_word 分词器处理;
- smart_content 采用 ik_smart 分词器处理;
分别对比下执行结果:
#创建索引PUT/analyze_chinese{ "mappings": { "properties": { "max_word_content": { "type": "text", "analyzer": "ik_max_word", "search_analyzer": "ik_max_word" }, "smart_content": { "type": "text", "analyzer": "ik_smart", "search_analyzer": "ik_smart" } } } } #添加测试数据POSTanalyze_chinese/_bulk{"index":{"_id":1}} {"max_word_content":"南京市长江大桥","smart_content":"我是南京市民"} # ik_max_word 查询分析器解析结果POST_analyze{ "text": "南京市长江大桥", "analyzer": "ik_max_word"} #结果:{ "tokens" : [ { "token" : "南京市", "start_offset" : 0, "end_offset" : 3, "type" : "CN_WORD", "position" : 0 }, { "token" : "南京", "start_offset" : 0, "end_offset" : 2, "type" : "CN_WORD", "position" : 1 }, { "token" : "市长", "start_offset" : 2, "end_offset" : 4, "type" : "CN_WORD", "position" : 2 }, { "token" : "长江大桥", "start_offset" : 3, "end_offset" : 7, "type" : "CN_WORD", "position" : 3 }, { "token" : "长江", "start_offset" : 3, "end_offset" : 5, "type" : "CN_WORD", "position" : 4 }, { "token" : "大桥", "start_offset" : 5, "end_offset" : 7, "type" : "CN_WORD", "position" : 5 } ] } #ik_smartPOST_analyze{ "text": "南京市长江大桥", "analyzer": "ik_smart"} #结果:{ "tokens" : [ { "token" : "南京市", "start_offset" : 0, "end_offset" : 3, "type" : "CN_WORD", "position" : 0 }, { "token" : "长江大桥", "start_offset" : 3, "end_offset" : 7, "type" : "CN_WORD", "position" : 1 } ] }
通过以上分析,ik_smart 显然分词的颗粒度较粗,而 ik_max_word 颗粒度较细
通过DSL来验证查询
POSTanalyze_chinese/_search{ "query": { "match": { "smart_content": "南京市" } } } #结果"hits" : { "total" : { "value" : 0, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }
未匹配到记录,因为“我是南京市民” 经过分词处理后并不包含“南京市” 的 token,
那通过“南京” 搜索呢?
POSTanalyze_chinese/_search{ "query": { "match": { "smart_content": "南京" } } } #返回"hits" : [ { "_index" : "analyze_chinese", "_type" : "_doc", "_id" : "1", "_score" : 0.2876821, "_source" : { "max_word_content" : "南京市长江大桥", "smart_content" : "我是南京市民" } } ]
经过 ik_max_word 分词处理器处理之后的 max_word_content 字段效果呢?
POSTanalyze_chinese/_search{ "query": { "match": { "max_word_content": "南京" } } } #结果"hits" : [ { "_index" : "analyze_chinese", "_type" : "_doc", "_id" : "1", "_score" : 0.2876821, "_source" : { "max_word_content" : "南京市长江大桥", "smart_content" : "我是南京市民" } } ] #使用 南京市 查询POSTanalyze_chinese/_search{ "query": { "match": { "max_word_content": "南京市" } } } #结果"hits" : [ { "_index" : "analyze_chinese", "_type" : "_doc", "_id" : "1", "_score" : 0.5753642, "_source" : { "max_word_content" : "南京市长江大桥", "smart_content" : "我是南京市民" } } ]
可以看到,由于 “南京市长江大桥” 经过 ik_max_word 分词器处理后,包含 “南京市” token,所以都可以查询到。
IK 分词器总结:
- ik_max_word 分词颗粒度小,满足业务场景更丰富
- ik_smart 分词器颗粒度较粗,满足分词场景要求不高的业务
pinyin 分词器
首先,下载 pinyin 分词器插件:
https://github.com/medcl/elasticsearch-analysis-pinyin
本地编译并打包后,上传到ES安装目录下的 plugins 下并解压,然后重启ES,重启后查看是否安装成功:
[elasticsearch@stage-node1 elasticsearch-7.10.0]$ ./bin/elasticsearch-plugin list ik pinyin
可以看到 pinyin 插件已经安装成功
PUT/analyze_chinese_pinyin/{ "settings" : { "analysis" : { "analyzer" : { "pinyin_analyzer" : { "tokenizer" : "my_pinyin" } }, "tokenizer" : { "my_pinyin" : { "type" : "pinyin", "keep_separate_first_letter" : false, "keep_full_pinyin" : true, "keep_original" : true, "limit_first_letter_length" : 16, "lowercase" : true, "remove_duplicated_term" : true } } } } } #GET/analyze_chinese_pinyin/_analyze{ "text": ["南京市长江大桥"], "analyzer": "pinyin_analyzer"} #返回:{ "tokens" : [ { "token" : "nan", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 0 }, { "token" : "南京市长江大桥", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 0 }, { "token" : "njscjdq", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 0 }, { "token" : "jing", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 1 }, { "token" : "shi", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 2 }, { "token" : "chang", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 3 }, { "token" : "jiang", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 4 }, { "token" : "da", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 5 }, { "token" : "qiao", "start_offset" : 0, "end_offset" : 0, "type" : "word", "position" : 6 } ] } #设置测试数据POSTanalyze_chinese_pinyin/_bulk{"index":{"_id":1}} {"name":"南京市长江大桥"} #根据拼音查询 njscjdqPOSTanalyze_chinese_pinyin/_search{ "query": { "match": { "name.pinyin": "njscjdq" } } } #返回"hits" : [ { "_index" : "analyze_chinese_pinyin", "_type" : "_doc", "_id" : "1", "_score" : 0.6931471, "_source" : { "name" : "南京市长江大桥" } } ] #通过 nan 查询POSTanalyze_chinese_pinyin/_search{ "query": { "match": { "name.pinyin": "nan" } } } # 返回"hits" : [ { "_index" : "analyze_chinese_pinyin", "_type" : "_doc", "_id" : "1", "_score" : 0.6931471, "_source" : { "name" : "南京市长江大桥" } } ]
因为经过 南京长江大桥 经过 pinyin_analyzer 分词器分词后,包含 nan 和 njscjdq 所以都能匹配查询到记录
Smart Chinese Analysis
参考:https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-smartcn.html
Smart Chinese Analysis 插件将Lucene的智能中文分析模块集成到elasticsearch中,
提供了中文或中英文混合文本的分析器。该分析器使用概率知识来找到简体中文文本的最佳分词。文本首先被分解成句子,然后每个句子被分割成单词。
此插件必须在每个节点上安装且需要重启才生效,此插件提供了smartcn 分析器、smartcn_tokenizer tokenizer、
./bin/elasticsearch-plugin install analysis-smartcn -> Installing analysis-smartcn -> Downloading analysis-smartcn from elastic [=================================================] 100% -> Installed analysis-smartcn
同样执行查看已安装插件的列表
[elasticsearch@stage-node1 elasticsearch-7.10.0]$ ./bin/elasticsearch-plugin list analysis-smartcn ik pinyin
安装成功后,需要重启 ES 以便插件生效
POST_analyze{ "analyzer": "smartcn", "text":"南京市长江大桥"} #返回{ "tokens" : [ { "token" : "南京市", "start_offset" : 0, "end_offset" : 3, "type" : "word", "position" : 0 }, { "token" : "长江", "start_offset" : 3, "end_offset" : 5, "type" : "word", "position" : 1 }, { "token" : "大桥", "start_offset" : 5, "end_offset" : 7, "type" : "word", "position" : 2 } ] }
hanlp 中文分词器
安装插件:
./bin/elasticsearch-plugin install https://github.com/KennFalcon/elasticsearch-analysis-hanlp/releases/download/v7.10.0/elasticsearch-analysis-hanlp-7.10.0.zip
安装后查看插件安装情况,安装成功后也同样需要重启ES
[elasticsearch@stage-node1 elasticsearch-7.10.0]$ ./bin/elasticsearch-plugin list analysis-hanlp analysis-smartcn ik pinyin
GET_analyze{ "text": "南京市长江大桥", "tokenizer": "hanlp"} #返回{ "tokens" : [ { "token" : "南京市", "start_offset" : 0, "end_offset" : 3, "type" : "ns", "position" : 0 }, { "token" : "长江大桥", "start_offset" : 3, "end_offset" : 7, "type" : "nz", "position" : 1 } ] }