面试官:为何Redis使用跳表而非红黑树实现SortedSet?(上)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 面试官:为何Redis使用跳表而非红黑树实现SortedSet?

知道跳表(Skip List)是在看关于Redis的书的时候,Redis中的有序集合使用了跳表数据结构。接着就查了一些博客,来学习一下跳表。后面会使用Java代码来简单实现跳表。



什么是跳表

跳表由William Pugh发明,他在论文《Skip lists: a probabilistic alternative to balanced trees》中详细介绍了跳表的数据结构和插入删除等操作,论文是这么介绍跳表的:


Skip lists are a data structure that can be used in place of balanced trees.Skip lists use probabilistic balancing rather than strictly enforced balancing and as a result the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees.



也就是说,跳表可以用来替代红黑树,使用概率均衡技术,使得插入、删除操作更简单、更快。先来看论文里的一张图:

image.png


观察上图


a:已排好序的链表,查找一个结点最多需要比较N个结点。

b:每隔2个结点增加一个指针,指向该结点间距为2的后续结点,那么查找一个结点最多需要比较ceil(N/2)+1个结点。

c,每隔4个结点增加一个指针,指向该结点间距为4的后续结点,那么查找一个结点最多需要比较ceil(N/4)+1个结点。

若每第2^i 个结点都有一个指向间距为 2^i的后续结点的指针,这样不断增加指针,比较次数会降为log(N)。这样的话,搜索会很快,但插入和删除会很困难。



一个拥有k个指针的结点称为一个k层结点(level k node)。按照上面的逻辑,50%的结点为1层,25%的结点为2层,12.5%的结点为3层…如果每个结点的层数随机选取,但仍服从这样的分布呢(上图e,对比上图d)?



使一个k层结点的第i个指针指向第i层的下一个结点,而不是它后面的第2^(i-1)个结点,那么结点的插入和删除只需要原地修改操作;一个结点的层数,是在它被插入的时候随机选取的,并且永不改变。因为这样的数据结构是基于链表的,并且额外的指针会跳过中间结点,所以作者称之为跳表(Skip Lists)。



二分查找底层依赖数组随机访问的特性,所以只能用数组实现。若数据存储在链表,就没法用二分搜索了?


其实只需稍微改造下链表,就能支持类似“二分”的搜索算法,即跳表(Skip list),支持快速的新增、删除、搜索操作。


Redis中的有序集合(Sorted Set)就是用跳表实现的。我们知道红黑树也能实现快速的插入、删除和查找操作。那Redis 为何不选择红黑树来实现呢?


image.png



跳表的意义究竟在于何处?

单链表即使存储的数据有序,若搜索某数据,也只能从头到尾遍历,搜索效率很低,平均时间复杂度是O(n)。


追求极致的程序员就开始想了,那这该如何提高链表结构的搜索效率呢?

若如下图,对链表建立一级“索引”,每两个结点提取一个结点到上一级,把抽出来的那级叫作索引或索引层。图中的down表示down指针,指向下一级结点。


image.png



比如要搜索16:

  • 先遍历索引层,当遍历到索引层的13时,发现下一个结点是17,说明目标结点位于这俩结点中间
  • 然后通过down指针,下降到原始链表层,继续遍历
    此时只需再遍历2个结点,即可找到16!


原先单链表结构需遍历10个结点,现在只需遍历7个结点即可。可见,加一层索引,所需遍历的结点个数就减少了,搜索效率提升。


image.png



若再加层索引,搜索效率是不是更高?于是每两个结点再抽出一个结点到第二级索引。现在搜索16,只需遍历6个结点了!


image.png



这里数据量不大,可能你也没感觉到搜索效率ROI高吗。

那数据量就变大一点,现有一64结点链表,给它建立五级的索引。



image.png



原来没有索引时,单链表搜索62需遍历62个结点!

现在呢?只需遍历11个!所以你现在能体会到了,当链表长度n很大时,建立索引后,搜索性能显著提升。

这种有多级索引的,可以提高查询效率的链表就是最近火遍面试圈的跳表。

作为严谨的程序员,我们又开始好奇了


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
4月前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
1月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
27天前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
27天前
|
存储 NoSQL 算法
面试官:Redis 大 key 多 key,你要怎么拆分?
本文介绍了在Redis中处理大key和多key的几种策略,包括将大value拆分成多个key-value对、对包含大量元素的数据结构进行分桶处理、通过Hash结构减少key数量,以及如何合理拆分大Bitmap或布隆过滤器以提高效率和减少内存占用。这些方法有助于优化Redis性能,特别是在数据量庞大的场景下。
面试官:Redis 大 key 多 key,你要怎么拆分?
|
2月前
|
存储 NoSQL Java
可能是最漂亮的Redis面试基础详解
我是南哥,相信对你通关面试、拿下Offer有所帮助。敲黑板:本文总结了Redis基础最常见的面试题!包含了Redis五大基本数据类型、Redis内存回收策略、Redis持久化等。相信大部分Redis初学者都会忽略掉一个重要的知识点,Redis其实是单线程模型。我们按直觉来看应该是多线程比单线程更快、处理能力更强才对,比如单线程一次只可以做一件事情,而多线程却可以同时做十件事情。但Redis却可以做到每秒万级别的处理能力,主要是基于以下原因:(1)Redis是基于内存操作的,Redis所有的数据库状态都保存在
可能是最漂亮的Redis面试基础详解
|
2月前
|
NoSQL Java API
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试一线互联网企业时遇到了关于Redis分布式锁过期及自动续期的问题。尼恩对此进行了系统化的梳理,介绍了两种核心解决方案:一是通过增加版本号实现乐观锁,二是利用watch dog自动续期机制。后者通过后台线程定期检查锁的状态并在必要时延长锁的过期时间,确保锁不会因超时而意外释放。尼恩还分享了详细的代码实现和原理分析,帮助读者深入理解并掌握这些技术点,以便在面试中自信应对相关问题。更多技术细节和面试准备资料可在尼恩的技术文章和《尼恩Java面试宝典》中获取。
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
|
2月前
|
NoSQL 算法 Redis
Redis面试篇
Redis面试篇
51 5
|
2月前
|
缓存 NoSQL Java
Java中redis面试题
Java中redis面试题
47 1
|
3月前
|
存储 缓存 NoSQL
【Java面试题汇总】Redis篇(2023版)
Redis的数据类型、zset底层实现、持久化策略、分布式锁、缓存穿透、击穿、雪崩的区别、双写一致性、主从同步机制、单线程架构、高可用、缓存淘汰策略、Redis事务是否满足ACID、如何排查Redis中的慢查询
【Java面试题汇总】Redis篇(2023版)
|
1月前
|
存储 NoSQL Redis
Redis常见面试题:ZSet底层数据结构,SDS、压缩列表ZipList、跳表SkipList
String类型底层数据结构,List类型全面解析,ZSet底层数据结构;简单动态字符串SDS、压缩列表ZipList、哈希表、跳表SkipList、整数数组IntSet