面试官:Redis 大 key 多 key,你要怎么拆分?

简介: 本文介绍了在Redis中处理大key和多key的几种策略,包括将大value拆分成多个key-value对、对包含大量元素的数据结构进行分桶处理、通过Hash结构减少key数量,以及如何合理拆分大Bitmap或布隆过滤器以提高效率和减少内存占用。这些方法有助于优化Redis性能,特别是在数据量庞大的场景下。
  • 1:单个简单的key存储的value很大
  • 2:value中存储过多的元素
  • 3:一个集群存储了上亿的key
  • 4:大Bitmap或布隆过滤器(Bloom)拆分

背景

业务场景中经常会有各种大key多key的情况, 比如:

1:单个简单的key存储的value很大

2:hash, set,zset,list 中存储过多的元素(以万为单位)

3:一个集群存储了上亿的key,Key 本身过多也带来了更多的空间占用

(如无意外,文章中所提及的hash,set等数据结构均指redis中的数据结构  )

由于redis是单线程运行的,如果一次操作的value很大会对整个redis的响应时间造成负面影响,所以,业务上能拆则拆,下面举几个典型的分拆方案。

1:单个简单的key存储的value很大

i:该对象需要每次都整存整取

可以尝试将对象分拆成几个key-value, 使用multiGet获取值,这样分拆的意义在于分拆单次操作的压力,将操作压力平摊到多个redis实例中,降低对单个redis的IO影响;

ii:该对象每次只需要存取部分数据

可以像第一种做法一样,分拆成几个key-value,  也可以将这个存储在一个hash中,每个field代表一个具体的属性,

使用hget,hmget来获取部分的value,使用hset,hmset来更新部分属性

2:value中存储过多的元素

类似于场景一种的第一个做法,可以将这些元素分拆。

以hash为例,原先的正常存取流程是  hget(hashKey, field) ; hset(hashKey, field, value)

现在,固定一个桶的数量,比如 10000, 每次存取的时候,先在本地计算field的hash值,模除 10000, 确定了该field落在哪个key上。

newHashKey  =  hashKey + ( set, zset, list 也可以类似上述做法

但有些不适合的场景,比如,要保证 lpop 的数据的确是最早push到list中去的,这个就需要一些附加的属性,或者是在 key的拼接上做一些工作(比如list按照时间来分拆)。

3:一个集群存储了上亿的key

如果key的个数过多会带来更多的内存空间占用,

i:key本身的占用(每个key 都会有一个Category前缀)

ii:集群模式中,服务端需要建立一些slot2key的映射关系,这其中的指针占用在key多的情况下也是浪费巨大空间

这两个方面在key个数上亿的时候消耗内存十分明显(Redis 3.2及以下版本均存在这个问题,4.0有优化);

所以减少key的个数可以减少内存消耗,可以参考的方案是转Hash结构存储,即原先是直接使用Redis String 的结构存储,现在将多个key存储在一个Hash结构中,具体场景参考如下:

一:key 本身就有很强的相关性,比如多个key 代表一个对象,每个key是对象的一个属性,这种可直接按照特定对象的特征来设置一个新Key——Hash结构, 原先的key则作为这个新Hash 的field。

举例说明:

原先存储的三个key

user.zhangsan-id = 123;

user.zhangsan-age = 18;

user.zhangsan-country = china;

这三个key本身就具有很强的相关特性,转成Hash存储就像这样 key = user.zhangsan

field:id = 123;

field:age = 18;

field:country = china;

即redis中存储的是一个key :user.zhangsan, 他有三个 field, 每个field + key 就对应原先的一个key。

二:key 本身没有相关性,预估一下总量,采取和上述第二种场景类似的方案,预分一个固定的桶数量

比如现在预估key 的总数为 2亿,按照一个hash存储 100个field来算,需要 2亿 / 100 = 200W 个桶 (200W 个key占用的空间很少,2亿可能有将近 20G )

原先比如有三个key  :

user.123456789

user.987654321

user.678912345

现在按照200W 固定桶分就是先计算出桶的序号 hash(123456789)  % 200W , 这里最好保证这个 hash算法的值是个正数,否则需要调整下模除的规则;

这样算出三个key 的桶分别是  1 , 2, 2。 所以存储的时候调用API  hset(key,  field, value),读取的时候使用 hget (key, field)

9974c6091cd27396066c53ec52536db.png

注意两个地方:1,hash 取模对负数的处理;2,预分桶的时候, 一个hash 中存储的值最好不要超过 512 ,100 左右较为合适

4:大Bitmap或布隆过滤器(Bloom)拆分

使用bitmap或布隆过滤器的场景,往往是数据量极大的情况,在这种情况下,Bitmap和布隆过滤器使用空间也比较大,比如用于公司userid匹配的布隆过滤器,就需要512MB的大小,这对redis来说是绝对的大value了。

这种场景下,我们就需要对其进行拆分,拆分为足够小的Bitmap,比如将512MB的大Bitmap拆分为1024个512KB的Bitmap。不过拆分的时候需要注意,要将每个key落在一个Bitmap上。有些业务只是把Bitmap 拆开, 但还是当做一个整体的bitmap看, 所以一个 key 还是落在多个 Bitmap 上,这样就有可能导致一个key请求需要查询多个节点、多个Bitmap。如下图,被请求的值被hash到多个Bitmap上,也就是redis的多个key上,这些key还有可能在不同节点上,这样拆分显然大大降低了查询的效率。

9bf626271703f3245b788398d5f71d5.png

因此我们所要做的是把所有拆分后的Bitmap当作独立的bitmap,然后通过hash将不同的key分配给不同的bitmap上,而不是把所有的小Bitmap当作一个整体。这样做后每次请求都只要取redis中一个key即可。

eba91540c51eaafbc144ab42138c2dd.png

有同学可能会问,通过这样拆分后,相当于Bitmap变小了,会不会增加布隆过滤器的误判率?实际上是不会的,布隆过滤器的误判率是哈希函数个数k,集合元素个数n,以及Bitmap大小m所决定的,其约等于 。因此如果我们在第一步,也就是在分配key给不同Bitmap时,能够尽可能均匀的拆分,那么n/m的值几乎是一样的,误判率也就不会改变。具体的误判率推导可以参考wiki:Bloom_filter

同时,客户端也提供便利的api (>=2.3.4版本), setBits/ getBits 用于一次操作同一个key的多个bit值 。

建议 :k 取 13 个, 单个bloomfilter控制在 512KB 以下

以上方案仅供参考,欢迎大家提供其他的优秀方案。

相关文章
|
4月前
|
存储 缓存 NoSQL
Redis常见面试题全解析
Redis面试高频考点全解析:从过期删除、内存淘汰策略,到缓存雪崩、击穿、穿透及BigKey问题,深入原理与实战解决方案,助你轻松应对技术挑战,提升系统性能与稳定性。(238字)
|
9月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
7月前
|
存储 NoSQL 定位技术
Redis数据类型面试给分情况
Redis常见数据类型包括:string、hash、list、set、zset(有序集合)。此外还包含高级结构如bitmap、hyperloglog、geo。不同场景可选用合适类型,如库存用string,对象存hash,列表用list,去重场景用set,排行用zset,签到用bitmap,统计访问量用hyperloglog,地理位置用geo。
219 5
|
11月前
|
缓存 NoSQL Java
Redis应用—6.热key探测设计与实践
热key问题在高并发系统中可能导致数据层和服务层的严重瓶颈,如Redis集群瘫痪和用户体验下降。为解决此问题,京东开发了JdHotkey热key探测框架,具备实时性、准确性、集群一致性和高性能等特点。该框架由etcd集群、Client端jar包、Worker端集群和Dashboard控制台组成,通过分布式计算快速识别热key并推送至应用内存,有效减轻数据层负载,提升服务性能。JdHotkey适用于多种场景,安装部署简便,支持毫秒级热key探测和集群一致性维护。
556 61
Redis应用—6.热key探测设计与实践
|
8月前
|
缓存 NoSQL Java
Java Redis 面试题集锦 常见高频面试题目及解析
本文总结了Redis在Java中的核心面试题,包括数据类型操作、单线程高性能原理、键过期策略及分布式锁实现等关键内容。通过Jedis代码示例展示了String、List等数据类型的操作方法,讲解了惰性删除和定期删除相结合的过期策略,并提供了Spring Boot配置Redis过期时间的方案。文章还探讨了缓存穿透、雪崩等问题解决方案,以及基于Redis的分布式锁实现,帮助开发者全面掌握Redis在Java应用中的实践要点。
443 6
|
10月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
8月前
|
NoSQL 测试技术 Redis
Redis批量删除Key的三种方式
Redis批量删除Key是优化数据库性能的重要操作,本文介绍三种高效方法:1) 使用通配符匹配(KEYS/SCAN+DEL),适合不同数据规模;2) Lua脚本实现原子化删除,适用于需要事务保障的场景;3) 管道批量处理提升效率。根据实际需求选择合适方案,注意操作不可逆,建议先备份数据,避免内存溢出或阻塞。
|
NoSQL API Redis
在C程序中实现类似Redis的SCAN机制的LevelDB大规模key分批扫描
通过上述步骤,可以在C程序中实现类似Redis的SCAN机制的LevelDB大规模key分批扫描。利用LevelDB的迭代器,可以高效地遍历和处理数据库中的大量键值对。该实现方法不仅简单易懂,还具有良好的性能和扩展性,希望能为您的开发工作提供实用的指导和帮助。
221 7
|
存储 缓存 NoSQL
Redis 面试题
Redis 基础面试题
295 1
|
存储 监控 NoSQL
Redis大Key问题如何排查?如何解决?
Redis大Key问题如何排查?如何解决?
650 0
Redis大Key问题如何排查?如何解决?