深入了解人工智能和深度学习

简介: 深入了解人工智能和深度学习

尽管人工智能研究多年来进展缓慢,但新一代人工智能应用正在崭露头角,前景广阔。根据市场调查机构Forrester公司去年进行的一项调查,在调查的3000家全球科技公司中,有41%的企业目前正在投资人工智能,另有20%的企业计划明年投资。

image.png

推动新一代人工智能发展的是深度学习、研究和设计模拟人脑神经元活动的人工神经网络。深度神经网络的目标是使机器能够像人类一样分析和解决复杂的问题。虽然人工神经网络已经存在了几十年,但只有随着可用的高性能计算(HPC)功率的出现,尤其是GPU计算能力的出现,数据科学家才能够建立具有足够复杂性和强度的神经网络来实现现实世界的应用。

 

这种新的深度学习系统已经获得了一些非常高调的媒体报道。最近的例子包括:2011年问世的苹果公司的个人助理Siri,而亚马逊的Alexa也在开始稳步发展,将准备为即将到来的物联网时代提供广泛的具有个性的家用设备。

 

这些深度学习应用的力量远远超出了华而不实的演示,并且开始对各种领域的业务发展产生重大而积极的影响。例如,使用技术分析数据并提供可操作信息的商业智能是人工智能和深度学习产生影响的一个领域。历史上,商业智能工具围绕使用数据收集,分析和呈现的思想构建,以解释为什么或如何发生某种结果。随着商业智能系统采用深度学习技术,他们现在不仅可以提供对过去行为更好地进行分析,而且可以利用他们积累的过去事件的“知识”来预测未来的客户行为。这种从描述性到预测性商业智能的转变,使企业能够找到更好的增长机会,并进行快速调整,以优化当前的业绩。

 

深度学习所带来的预测能力将对农业等传统产业产生颠覆性影响。据专家介绍,为了满足全球人口增长的需求,农业产业必须增加60%的粮食产量,预计到2050年底,全球人口将达到90亿。为了满足这一巨大的粮食需求,农业技术公司正在利用深度学习技术,在整个生长和收获周期中提高其效率。人工智能应用于农业产业包括自动灌溉系统,可以降低蔬菜的生产成本,同时最大限度地减少对环境的影响;农作物智能健康监测,可以在几千英亩提供高分辨率的植物数据;以及一系列其他的改进。这些进展再加上气象学和其他学科对农业的深刻深度学习进展,是确保未来粮食供应稳定的一项关键战略。

 

虽然深度学习应用程序为许多领域提供了巨大改进的机会,但是深入学习神经网络的训练是耗时,高度计算密集型的工作。此外,由于晶体管功率效率不断提高,这种计算密集性需要稳定和充足的电源,这是非常重要的。大多数人工神经网络使用“监督学习”方法训练,这意味着提供大量的良好标签的数据。列举一些众所周知的例子,其中包括谷歌翻译,谷歌翻译分析双语数据的资料库来开发更准确的翻译算法。处理这些应用程序中使用的数据集所需的计算资源往往会达到Exaflop范围。使用高度可扩展性的超级计算系统,利用快速的网络互连技术,并提供大规模并行计算能力是这种挑战的解决方案。随着广泛可用的超级计算系统的应用和GPU处理能力的出现,过去几个月训练的深层学习算法现在可以在一天内或更短时间训练。

 

人工智能应用的未来前景看起来非常光明。从人工智能应用程序(如苹果Siri和亚马逊的Echo)的突出表现来看,许多专注于人工智能和深度学习的初创公司正在为业务增长创造新的途径,似乎人工智能的黄金时代终于开始到来。

相关文章
|
26天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
66 3
|
16天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
28天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
84 9
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的深度学习与自然语言处理前沿
【10月更文挑战第10天】探索人工智能的深度学习与自然语言处理前沿
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
50 7
|
16天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
62 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
53 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
60 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
28天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
59 2
|
6天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能中的深度学习模型优化策略
探索人工智能中的深度学习模型优化策略